The first newsletter of eINTERASIA is aimed at presenting the project objectives, partners and work packages. It also presents a publishable e-version of Deliverable “Internet-Based Logistics Principles”

The Project

Central Asia is of great importance to the EU, specially due to its role as a bridge to China, Afghanistan, Vietnam and the Middle East. That is why it has been selected to be the focus of the creation of an Information and Communication Technology Transfer Concept (TTC).

In addition to the TTC, eINTERASIA will be introducing a web- and multi-agent-based software framework for adaptation for business-related applications, local social structures, service needs and other user requirements.

The focus of the demonstration, localisation and testing of the TTC and supporting software will be in the eLogistics sector, although other industrial sectors, such as digital engineering, may also benefit from the project results.

Additionally, eINTERASIA will start collaborative initiatives to facilitate transformation of research results to Central Asia’s public and business sectors and reinforce the competitiveness of European ICT solutions.

The Objectives and Expected Results

Project Objectives

The eINTERASIA project seeks to:

- Define an ICT transfer concept for Central Asia by investigating promising technology transfer models and concepts for the adaptation of European ICT research results
- Create a business-oriented software framework and web-based framework to support the adaptation of EU research results to local needs
- Adapt, demonstrate and validate European ICT research results while supporting business applications in eLogistics
- Establish a network of innovation and technology transfer initiatives in line with the ICT transfer concept
- Promote and disseminate technology transfer strategies in 3rd countries that can be carried out beyond the project’s running time.
Technology Transfer Concept
The Technology Transfer Concept (TTC) is based on the synergy of several central components:
- a Capability Maturity Transfer Model
- Showrooms
- Virtual Reality-Based Models and Platforms

Transfer of business-related solutions for:
- Transport (infrastructure, logistics and transportation)
- Digital Engineering (product & process development as well as education & training)

Support for the innovation system of Central Asia partner countries through the development and implementation of critical technologies

Creation of technology partnerships and innovation clusters to enhance:
- The success rate of implementing cutting edge technologies and international quality standards
- the creation of standardized processes for future technologies’ transfer towards SMEs (Productivity 2020)

Project Work Packages
- WP1 - Project management
- WP2 - ICT transfer models and concept of transformation
- WP3 - Intelligent multi-agent and web-based framework to support technology transfer concept (TTC)
- WP4 - Business-related application in eLogistics
- WP5 - Demonstration and Validation
- WP6 - Dissemination and Communication
- WP7 - Business development and IPR management

Internet-Based Logistics Principles
The project’s newsletter presents a publishable e-version of Deliverable D4.4.1 (Internet-Based Logistics Principles).

The major objective of work package “Business-related application in e-Logistics” (WP4) is to analyze and structure logistics business processes, develop Internet-based model for localization and demonstration of Web-based solutions in Central Asian countries.

Business sector of eLogistics is selected to demonstrate eINTERASIA approaches because of global world-wide character of its challenges.

The results of investigation of intermodal logistics and transportation processes in Central Asian countries (Kazakhstan, Uzbekistan, Tajikistan, Turkmenistan, and Kyrgyzstan) are used to define transportation modes that are typical for Central Asian countries.

Transportation modes that are used in Central Asia are rail and road transport. Countries of Central Asian region are located on the Great Silk Road and haven’t direct access the major ports and markets in Western Europe, USA, China etc. To enter the major seaports at least two, and in some directions three boundaries, must be crossed.

Therefore, the main transportation mode for Central Asian countries is intermodal transportation “sea-railway (block trains/single dispatch) - road / trucks”.

For instance, in import operations Central Asian countries use mainly the major sea ports in Western Europe (Hamburg, Bremen etc.) and Baltic States (Tallinn, Riga, Klaipeda) for further goods transportation by railway to the region of destination. Inside Central Asian region goods are transported by rail and/or road. Typical integrated freight forwarding company operated in Central Asia provides several main transportation
modes:

1) intermodal transportation:
 - “sea - railway (block trains / single dispatch) – road”
 - “sea - railway (block trains / single dispatch)”
 - “sea-road”

2) road transportation
3) railway transportation (block trains / single dispatch).

Organizing of transport operations should be affordable and simple, the transportation route should be chosen rationally and cost-effectively in terms of both carriers and users of transport services - cargo owners, forwarders, and other transportation stakeholders.

Studying the experience of western developing countries shows that modern information and communication technologies serve as the basis of effective managing of transportation and logistics processes. This experience should be transferred to Central Asian region and adapted to the local conditions.

Further development and adaptation of EU IT-solutions (for instance, transport and logistics portal www.elogmar.eu) need defining and structuring the transportation business processes in Central Asian Countries. The Business System Planning method is used to define and structure the main functions of typical freight forwarding company operated in Central Asia.

Major functions are first defined when analyzing the business activities. The processes included in each major function are then defined, and these are broken down into sets of activities. Through this process, the business functions, processes, and activities can be identified and documented. The results of an analysis are displayed in the form of a functional diagram and a simple chart, called a business charts.

During the process of business analysis the information required by these functions is analyzed. Clearly each function has its own specific data requirements to meet responsibilities.

Users’ views are used to define and structure the business processes. A user view is a subset of data required by a particular user to carry out some actions. Therefore, to develop business charts, a number of the users views displayed in the different forms must be collected.

Web-Based Environment is used to provide cooperation between different actors from Cargo owners and Transportation groups being involved in cargo transportation process.
Transportation Group: shipping lines, agencies of shipping lines/sea freight broker, transshipment operators (railway station, port terminal), intermodal freight forwarders, railway operators (rail cars), block train operator, road carriers.

Cargo Owners group: cargo owners, shippers, traders. Cargo is transported in standard containers (20’’DC, 40’’DC, 40’’HC).

Actors from Cargo Group can calculate a start-to-finish transportation rate using on-line transport request. Actors from Transportation Group enter data related to transportation costs and expected transit time in data base.

One of the EU projects which results will be adapted and applied in Central Asia is eLOGMAR-M www.elogmar.eu.

Additional transportation mode focused on Central Asian region and supported by web-based portal (Sea – Railway – Road) will be realized by automatic combination of already existing separate web-based modes (Sea, Railway, Road).

PARTNER EVENTS

- Kick-off meeting (Part 1) : Magdeburg, Month 1st, March 2013
- Kick-off meeting (Part 2) : Bremen, Month 4th, June 2013
- Workshop 2 : Astana, Month 7th, September 2013
- Workshop 3 + review meeting : Riga, Month 13th, March 2014
- Workshop 4 : Dushanbe, Month 20th, October 2014
- Workshop 5 + review meeting : Vilnius, Month 25th, March 2015
- Workshop 6 : Tashkent, Month 27th, May 2015
- Workshop 7 + review meeting : Almaty, Month 30th + 1, 2015

PROJECT PARTNERS

- Riga Technical University
 - Latvia
- University of Bremen
 - Germany
- Fraunhofer Institute for Factory Operation and Automation IFF
 - Germany
- Logitrans Consult Ltd.
 - Estonia
- Mitsof Ltd.
 - Lithuania
- BISAM Central Asia
 - Kazakhstan
- Technological University of Tajikistan
 - Tajikistan
- Uzbek International Forwarders Association
 - Uzbekistan
- Astana Innovations
 - Kazakhstan