



# **NANOSIL FINAL REPORT**

**Grant Agreement number: 216171** 

Project acronym: NANOSIL

Project title: Silicon-based nanostructures and nanodevices for long term nanoelectronics

applications.

Funding Scheme: NoE

**Period covered:** from January 1<sup>st</sup>, 2008 to March 31<sup>st</sup>, 2011.

Final Report

Name of the scientific representative of the project's co-ordinator<sup>1</sup>, Title and Organisation:

Director of Research Francis BALESTRA, Grenoble INP - CNRS

Tel: +33 (0)4 56 52 95 10

Fax: +33 (0)4 56 52 95 01

E-mail: balestra@minatec.grenoble-inp.fr

Project website address: http://www.nanosil-noe.eu

<sup>&</sup>lt;sup>1</sup> Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement.

## TABLE OF CONTENTS

| 4.1 Final publishable summary report                                                          | 3   |
|-----------------------------------------------------------------------------------------------|-----|
| 4.1.1 Executive summary                                                                       | 3   |
| 4.1.2 Summary description of project context and objectives                                   | 5   |
| 4.1.3 A description of the main S&T results/foregrounds                                       | 8   |
| 4.1.4 The potential impact (including the socio-economic impact and the wider societal        |     |
| implications of the project so far) and the main dissemination activities and exploitation of |     |
| results                                                                                       | 40  |
| 4.2 Use and dissemination of foreground                                                       | 50  |
| 4.3 Report on societal implications                                                           | 102 |

## 4.1 Final publishable summary report

Coordinator: INPG SA (administrative and financial coordination)

Final Report

- Scientific and project coordination: Grenoble INP
- Project web site: http://www.nanosil-noe.eu/
- Logo:



## 4.1.1 Executive summary

- Introduction: The shrinking dimensions of electronic components will continue in the next two decades. In the sub-10nm range, "Beyond-CMOS" devices will certainly play an important role and could be integrated on CMOS platforms in order to pursue integration down to nm structures. The needed performance improvements for the end of the roadmap will lead to a substantial enlargement of the number of materials, technologies and device architectures. Therefore, new generations of Nanoelectronic ICs present increasingly formidable multidisciplinary challenges at the most fundamental level resulting in an urgent need of academic research, using joint flexible processing, characterization and modelling platforms. During Nanosil, close links with other European Projects, the ENIAC ETP, the AENEAS organization and National projects in the same fields have been established in order to enhance the overall efficiency of the European Research in Nanoelectronics. The interaction between the Scientific Community and the European Industry has also been strenghened. Many Nanosil Partners and Sinano Institute Members have contributed to the "Sinano Institute vision", driven by the European Academic Community, in order to determine the most promising research topics in the More Moore, More than Moore and Beyond CMOS Nanoelectronic domains. During the project, we have studied some of the main scientific and technical challenges put forward by the International ITRS Roadmap and European ENIAC Strategic Research Agenda. Some very important specific actions have also been launched for the strengthening of the durable integration of the NoE: i) seven new Partners became Members of the Sinano Institute in 2009, which is a legal entity (Scientific Association) created in January 2008 for the coordination of the European Academic Community working in the field of Nanoelectronics; ii) the Joint Processing, Joint Characterization and Modelling Platforms, which have been developed and used in the framework of the Nanosil NoE for our joint research activities are now integrated as open Research Infrastructures in the Sinano Institute; iii) Nanosil Partners and Sinano Institute Members have been strongly associated, as representatives of the academic community, to the new initiative launched in 2010 by STMicroelectronics called ENI2 (European Nanoelectronics Infrastructure for Innovation).; iv) a significant part of Nanosil Partners have launched a new FP7 complementary NoE, Nanofunction, and the FET Flagship "Guardian Angels" proposal that has been selected as a pilot project.
- **WP1:** Many of the aspirations coming out of the SiNANO NoE in terms of network interactions and technological advancements have been realized in NANOSIL, with a a new Flagship Project (FP) concept proved to be effective, and with good cross-FP interactions allowing the realisation of some very challenging device fabrication activity on the processing platform (via WP3). We were also able to very effectively engage related simulation work from WP4. At the onset we knew that the objectives of this WP were very ambitious and certainly world leading. The big results from WP1 include some very significant progress on the realisation of new 'platforms' for future CMOS, primarily based on Ge. Significantly enhanced device hole mobilities were realised, both on insulator (OI) and on new designs of virtual substrates. In the latter case we were able to access IMEC's world leading work on short channel Ge device process, together with the development an implant-free process that is yielding excellent short channel characteristics - initially on bulk Ge. Cumulative network activity strongly suggests that the (110) orientation is required to get the most out of strained Ge, but this has to be on a OI platform to achieve ultimate p-channel performance, and shows excellent prospects for the Ge n-channel. As channel lengths approach the 10 nm regime, contact resistance

looms as a major performance limiter, particularly so with the concurrent restrictions in thermal budgets imposed by the new channel and gate stack materials. Here we made some very significant advancements using dopant segregation (DS) to reduce Schottky barrier heights to acceptable levels (<0.1eV). DS processes were developed with temperatures generally <600°C, primarily for Pt but also included the first study on Er, which produced the required dopant pile-up of either As (for n- channel) or B (for p-channel) close to the silicide/channel interface. Scaling/integration issues were also addressed, obtaining good short channel device behaviour and enhanced on-currents - requiring low Schottky barrier height and low contact-channel resistance under the spacer layer. Studies of Ni silicide contacts were also undertaken and 80nm DS-NiSi nMOSFETS showed excellent RF performance with good prospects for further downscaling. It was also found that epitaxial Ni produced very low contact resistance on both SOI and SSOI devices. Very recently, we also showed for the first time, that DS can be used to good effect in Schottky barriers to SSOI, giving low barrier heights that decrease with increasing strain (0-40% equivalent), aided by dopant segregation. Early work on Ge channels produced some excellent results, showing very low barriers heights (<0.1eV) for both holes and electrons with DS techniques. On the new gate stack we soon decided to put all our eggs into the LaLuO<sub>3</sub> basket. Undoubtedly HfO<sub>2</sub> has more life left in it, but a new material with higher energy offsets and high k value will be needed by the end of this decade. Our results strongly suggest that this material could meet the required spec of gate leakage, interface state density and bulk oxide trap density. This is a very exciting result coming out of our Network. Without question, however, control of the interfacial LaLuO<sub>3</sub>/Si layer will be critical to achieve low EOT- and maintain high k- values, and here lower processing temperatures could be key. Our forward look (Visionary Project) proved to be a fascinating foray into future nanoelectronics, coming up with the view that Europe should focus activity on FD-SOI technologies including relevant More Moore and Beyond CMOS work, and that there is money to be made in advanced More-than-Moore technologies!

- WP2: The main objectives of WP2 within Nanosil are to explore the horizon beyond CMOS and/or beyond MOORE by following closely the emerging technologies for alternative silicon-based post nano-electronic devices. Embedded within the other work packages of Nanosil, WP2 activities cover a wide spectrum ranging from new fabrication methods and novel switching memory concepts to new functionalities and architectures. These activities were fairly balanced among the different groups working on five sub-tasks: i) Si-Nanowires, ii) Carbon Electronics, iii) Small Slope Switches, iv) Templated Self-Organization and v) Visionary Beyond CMOS. Significant progress has been made in these focused efforts, exemplified by the following selected highlights: i) Fabrication of junctionless multi-gate MOSFET (MuGFET), ii) Significant advances in small-slope switches with a grant of the STREP project STEEPER (steep subthreshold slope switches for energy efficient nanoelectronic circuits), iii) Fabrication of Single Electron Memory Devices, iv) Implementation of Ge-QDs in electrical devices, especially in QD-Schottky diodes with cut-off frequency up to 1,1 THz implemented in mm-wave detection circuits. In general these focused research attempts within the network have provided substantial insight in both the confidence of individual groups as well as the ability to collaborate. A large body of "beyond CMOS knowledge" has been accumulated among leading groups in Europe, providing an excellent platform for future projects as well as a decisive orientation for future industrial roadmaps beyond CMOS.
- WP3: The JPP has executed 7 batches of fully processed MOSFETs within NANOSIL. Process modules that have been integrated and evaluated in the MOSFET process line are Dopant Segregated Schottky Barrier contacts and LaLuO3/TiN gate stack on bulk-Si, FD SOI and FD strained SOI. Strained Ge channel PMOSFETs and embedded Ge stressors in N and P bulk MOSFETs have also been fabricated. Substantial work has been performed to adopt and tailor the process modules and the MOSFET fabrication line in order to successfully fabricate MOSFETS with new and innovative architectures and materials. The close collaboration between partners involved in the integration of process modules from FPs into the JPPs MOSFET process line has spurred several collaborations and activities that are envisioned to continue many years after the end of NANOSIL.
- **WP4:** WP4 main objective has been to set in operation and strengthen the Joint Characterization and Modelling Platform that was established in the SINANO NoE, by integrating and validating the modelling approaches and tools against ad-hoc, well-characterized template devices. The core of the activity stemmed from the early definition of common template devices for benchmarking simulation models, including 32 nm and 22 nm gate length Bulk and Double gate MOSFETs and nanowire FETs.

Based on these common work-benches, a number of comprehensive investigations were performed, involving several partners in a truly cooperative effort. The topics spanned from the thorough understanding of the lowfield mobility in biaxially-strained n-MOS and p-MOS transistors, to a comparison of up to eight different transport models, ranging from a 3D NEGF solver including the scattering mechanisms, to a deterministic solver of the one-dimensional Boltzmann transport equation, applied to DG-MOSFETS and nanowires. Other highlights of WP4 include the development of an analytical electron and hole mobility model for ultrathin body FETs on different crystallographic orientations for simulation of SOI-FETs, FinFETs and Silicon nanowires, implemented in the commercial simulator Sentaurus by Synopsys, the calibration of the compact models based also on numerical simulations carried out by NANOSIL partners on template devices, and advances in characterization including a new method to measure the threshold voltage VT in nanoscale transistors and the investigation on the origins of high-field mobility enhancements in uniaxially strained Si by high resolution AFM measurements on strained Si beams with varying degrees of uniaxial strain.

Final Report

**WP5**: Large and growing from year to year number of joint activities (38 in 2008, 47 in 2009, 58 in 2010-11), indicates good and progressive integration of Nanosil partners. It is also reflected by increasing number of within- and cross-WPs/FPs "technical meetings" (18 in 2008, 32 in 2009 and 41 in 2010-11). Partners' integration was reinforced by common PhD students. Then, exchange of personnel served for further strengthening the exchange of knowledge/competence and complementarity between partners. 59 exchanges with total duration of 227 weeks were done during the project. Interaction with industrial partners aiming at roadmapping, assessing the results and assuring theirs transferability to industry was realized through their participation in E&SC Meetings, technical meetings/seminars/workshops; common industry-academia PhD students. Efficiency of partners' integration is proven by high number of joint papers (>100) and joint conference presentations (>130); many newly submitted projects involved 2 or more Nanosil partners, both academia and industry (7 in 2008, 15 in 2009 and 14 in 2010-11). Targeting dissemination of Nanosil knowledge for a wide scientific community, 66 schools/ whorkshops/conferences were organized by Nanosil partners (13 in 2008, 21 in 2009 and 32 in 2010-11) either with or without financial support from Nanosil. Then, Nanosil poster, News Letters, monthly updated Breaking News available on the Nanosil web-site further promote Nanosil achievements. Moreover, 2 books and 33 book chapters published by Nanosil partners assure durable accessibility to the knowledge and developments gathered within Nanosil.

## 4.1.2 Summary description of project context and objectives

**WP1** was devoted to "More Moore" activities that aim to improve CMOS performance for the 22nm node technology and beyond. It has become increasingly clear that for all the exciting developments of "More than Moore" activities there is still a strong requirement for developments of the underlying transistor performance (see D1.10). The outcomes of WP1 should be applicable both in pushing forward highly scaled devices and as technology boosters that allow longer life to existing geometries. Joint activity has focused on three areas that can be expected to provide significant impact on future CMOS - materials for high speed channels, low access resistance, and high dielectric constant gate stacks. Each flagship project has integrated activities in design, fabrication, characterization and modelling, and has been supported in carrying out that work by the Joint Platforms of WP3 & WP4. A fourth activity has provided a forum for discussing hot topics in ultimate CMOS and identifying areas where the partners of this Network can make a contribution, now and in future.

Flagship Project 1.1 New Channel Materials (coordinated by FZJ)

Flagship Project 1.2 Very Low Schottky Barrier MOSFETs (coordinated by ISEN-IEMN)

Flagship Project 1.3 Advanced gate stacks/ High k dielectric materials (coordinated by Chalmers)

Visionary Project 1.4 More Moore Forum (coordinated by GRENOBLE INP-FMNT)

Objective 1.1: To fabricate and investigate new channel materials enabling enhanced mobilities and to assess their properties when transferred to insulator platforms. Specifically to identify the material, platform design, crystallographic orientation, channel direction, layer thickness and strain that maximises electron and hole mobility.

**Objective 1.2:** To develop a global approach to very low Schottky barrier (SB) MOSFETs, including material aspects, device integration challenges, and assessment of this technology as a potential end-of-roadmap solution.

Objective 1.3: To find gate stack candidates for the final chapters of scaling that fulfil the ITRS leakage current targets for high performance, low power and low standby power devices for the 16 nm node. Activities focused on  $LaLuO_3$  to improve leakage of  $TiN/LaLuO_3/Si$  stacks, increase understanding of the  $LaLuO_3/Si$  interface including the nature of the interlayer and tune the  $TiN/LaLuO_3$  workfunction

**Objective 1.4:** To hold discussions that will gather information and understanding, and to generate ideas (brainstorming) from academic partners about some hot topics related to ultimate CMOS devices

• **WP2:** In WP2 many different research aspects have to be considered to explore the future emerging CMOS technologies for fabrication of alternative Si-based Nano-Devices. The investigated approaches include the improving of top-down and bottom-up methods for fabrication of nanostructures for Si-NW devices, novel logic switching devices and devices with new functionalities and/or architectures. In the reporting period an enforced cooperation was established between the WP2 partners and expanded to other Nanosil partners, especially to WP1, WP3 and WP4. The direct collaborations between the partners are clearly visible now. The most activities and achievements were in full accordance to the plan of the FSP proposals. The WP2 network activity has been designed to cover the following flagship projects:

#### **FSP2.1 Si-Nanowires**

The aim of this project was to define advanced fabrication processes in order to move to high performance devices to assure the availabilities of Si nanowires (NW) for characterization, modeling and simulation tasks. In the reporting period the research activities of FSP2.1 were concentrated on investigation and fabrication of Si nanowires by vertical and horizontal growing techniques for new NW-MOSFETs, the fabrication and characterization of Junctionless Si-nanowire MOSFETs, the investigation of dynamic self-heating effects in Fin-FETs including the influence and correlation between the surface roughness and the induced strain on such structures.

The Junctionless multiple-gate MOSFET (MuGFET) proposed and fabricated by the Tyndall group is the most important highlight, published as Breaking News. This device has demonstrated near-ideal sub-threshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.

#### P2.2. (Associated STREP) Carbon Electronics

The goal of this associated project was to establish collaboration between European Research Institutions on carbon based electronics.

## FSP2.3 Small slope nanoelectronic switch for low power integrated circuits

In this task, key technological, simulation and modeling contributions for beyond CMOS nanoelectronic switches focused on *Tunnel FET* with very abrupt transition (small slope) between the off and on states were developed. In 2009 a joint STREP FP7 Call 5 proposal STEEPER (Steep subthreshold slope switches for energy efficient nanoelectronics circuits) was prepared. The proposal was evaluated and accepted spring 2010 and is successfully running currently. This STREP proposal coordinated by EPFL based on the participation of four core Nanosil partners and three external industrial partners (Global Foundries, IBM Zurich and Infineon).

## FSP2.4 Templated Self-Organization

This project opened a route from defined positioning of self-organized nanostructures, to functionalization and to fabrication schemes for new integrated devices. The research focus was concentrated on templated growth of Si NWs (vertical and horizontal growth) including electrical operation of NW test devices. Various NW transistors were investigated in comparison to top-down versus bottom-up approaches. In addition the implementation of space charge techniques for characterization of Ge-QDs embedded in Si was investigated. Furthermore Single Electron Memory devices (SEM) were fabricated and electrically characterized. Finally, Ge-QDs were implemented successful in electrical devices in response of the reviewer comments.

The main highlight is obtained by a subtractive process which allowed the successful fabrication of single Si/SiGe-QD floating gate self-aligned to Si-NW channel of Single Electron Memory (SEM) structure. For the

Final Report

fabricated SEM, single electron injection in the floating gate has been demonstrated. Additionally, QD Schottky diodes with cut-off frequency up to 1.1THz have been fabricated and successfully implemented in an mm-wave detection circuit (89GHz RECTENNA). Also, room temperature NDR of Ge QD interband tunneling diodes have been achieved.

#### **Visionary Project 2.5 Beyond CMOS Vision**

The goal of this project was to provide a forum (especially workshops) between European Research Institutions on innovative visionary "Beyond CMOS" ideas. A lot of workshops were provided, for example on Brain-Inspired Electronic Systems (BIECS), on Convergence of Electronics and Photonics and on Beyond CMOS routes.

- **WP3:** Work package 3 is devoted to the Joint Processing Platform (JPP) within NANOSIL. The main objective is to provide partners with a flexible processing platform that can fabricate MOSFETs down to 60 nm gate length. Academic partners within work package 1, 2 and 4 perform research on selected areas such as a particular process module e.g. new channel materials, new high-k/metal gate stacks or Schottky barrier contacts. The purpose of WP3 is to provide a full MOSFET process line where a particular process module can be inserted to evaluate and exploit the potential in fully processed P and NMOSFETs. The JPP is designed to be able to provide short gate length devices but still flexible enough to allow the insertion of new materials and architecture in an early stage of the research. The main objectives are as follows: 1) executtion of MOSFET batches for the flagship projects (FPs), 2) to ensure 3,5 months turn-around time, 3) to coordinate processing between different partners, 4) to fabricate test structures and MOSFETs for WP4 and 5) to develop and integrate processes especially needed for the FPs. KTH coordinated WP3 and had the responsibility to coordinate the MOSFET batches in the JPP for the other work packages and FPs. The JPP is to be seen as a support to the FPs and work within WP3 was dedicated both to tailor and adopt process modules from the FPs as well as tailoring the MOSFET fabrication line in order to integrate the work performed within the FPs. The JPP takes the overall responsibility for the MOSFET fabrication and in close collaboration with partners in WP1 and WP2 coordinate and execute the work needed to integrate a particular process module within a full MOSFET process. Academic partners within WP1 and 2 is thus provided with knowledge and know-how of a flexible full device processing line in order to successfully integrate their work into short gate length MOSFETs. Finally JPP executed batches of MOSFETs with the most promising or scientifically most important process modules as determined in mutual agreement between partners in WP1,2 and 4.
- **WP4:** The European semiconductor research community has a long-standing tradition in the development of tools for electron device simulation, both in Academia and Industry. Over the years, several research groups have tackled the issue of modelling nanoscale transistors adopting different approaches and transport models. Among them, Full Quantum models based on the tight-binding (TB) Hamiltonian provide a detailed physical description of nano-structures, while Semi-classical models based on the solution of the Boltzmann Transport Equation (e.g. by Monte Carlo techniques) have been recently extended to the description of nano-FET inversion layers for both the low field and the far from equilibrium quasi-ballistic regime where conventional TCAD tools become inaccurate. These models underpins the recent developments in the modelling and characterization of strain induced mobility enhancements in advanced CMOS technologies concern both the understanding of the underlying physical mechanisms for the mobility modulation and the design and optimization of the devices.

From the experimental point of view, the electrical characterisation of advanced CMOS devices featuring short channel length and ultra thin gate oxides presents major difficulties. This is mainly due to gate length or gate width shortening, which renders effective channel length/width extraction problematic. Moreover, huge gate leakage makes very difficult to get reliable measurements of C-V characteristics, which prevent correct extraction of basic parameters of MOS structures. Main challenges concern the dielectric-channel interface characterization, the transport assessment in ultra-short devices where ballistic effect should occur, and, reliability or instability issues related to few carrier and few dopant number phenomena.

The main objective of WP4 has been to set in operation and strengthen the Joint Characterization and Modelling Platform that was established in the SINANO NoE. This has been accomplished by a two-fold approach: from one end specific problems were tackled by single partners or by a small cluster of partners; on the other end a relatively large number of partners joined forces to integrate and

validate the most advanced modelling approaches and tools against ad-hoc, well-characterized template devices. Successful examples of this truly cooperative activity, are: the results reported in D4.1 (definition of template devices), a thoroughly comparison between the MC simulators (semi-classical model) for a subset of template devices [1], and a comprehensive comparison of full-quantum vs. semi-classical models carried out on the most advanced template devices, including model assessment.

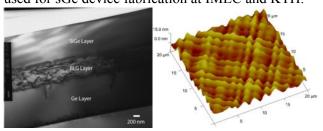
We believe this is an important objective of the NANOSIL Network of Excellence, since such a systematic comparison can be a useful guide to a young researcher entering the field, and can represent in an objective way the relative merits of different tools to a large group potential users, both in Industry and in Academia. [1] F. Bufler, et al., the 14th International Workshop on Computational Electronics (IWCE-14) Conference, Pisa 2010.

- **WP5:** The main goal of WP5 is to reinforce the integration and spread of knowledge between Nanosil partners as well as promoting the network and its achievements towards the whole scientific community. The particular objectives are as follows:
- coordination/stimulation of joint activities between partners by WPs leaders;
- integration between partners through common PhD students, personnel exchanges, etc.
- collaboration with other European and national projects;
- Spreading of excellence / dissemination of knowledge inside and beyond Nanosil through the organization/participation in workshops, courses, conferences, etc.

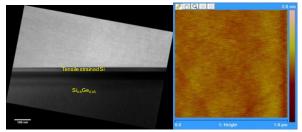
## 4.1.3 A description of the main S&T results/foregrounds

#### WP1:

## **FP1.1 New Channel Materials**


## Strain inducing platforms

Throughout NANOSIL strain continued to be one of the prime performance boosters with no sign, at least from simulation, of significant saturation up to  $\approx$ 4GPa. Although primarily achieved by local processing techniques, global inducement remains a good approach for at least development work. Also the leverage for a move to on-insulator(OI) platforms for mainstream production remains high and certainly in the low power regime where many of the killer applications are.


There was significant related activity in NANOSIL in these areas, the highlights being:

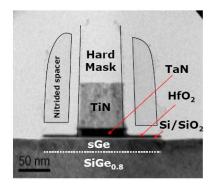
#### *a)* Reverse graded (100) virtual substrates

By compositionally "reverse" grading from a Ge layer grown on Si it was found possible to produce relatively thin and smooth high Ge strain tuning platforms compared to growth directly from Si. A CVD process was developed(Warwick) giving platforms of 80% Ge content with a roughness of  $\approx$ 2.5nm (Fig 2). These were used for sGe device fabrication at IMEC and KTH.



**Fig 2.** Reverse graded virtual substrate in cross section TEM view and surface profile from AFM.




**Fig 3**. XTEM of re-grown 24 nm strained Si layer on 45%Ge VS, AFM image indicates a smooth surface (roughness < 1 nm).

#### b) High strained SOI and sGeOI platforms

Development work to create high strain (up to≈ 6GPa) SOI and sGeOI platforms was initiated on Nanosil though a collaboration with Juelich and MPI-Halle (sub-contracted to Juelich). For high sSOI a CMP process was developed at IMEC on 30, 40, 50% and 80% virtual substrates yielding a smooth (roughness in range 0.4 to 0.1nm) and clean surface, Fig. 3. Si CVD regrowth on these VSs yielded a comparably smooth sSi layer. sGe layers on reverse graded VSs were also shipped to Halle for early development work on a sGeOI process. but as with the high sSOI, only very limited layer transfer work has been possible at Halle due to resource limitations. But this remains an on-going activity involving Juelich, MPI-Halle and Warwick.

#### **Ge MOSFETS**

**NANOSIL** 



Vd=-20mV WxL=10x10um2 Split CV mobility (cm<sup>2</sup>/V.s) 200 #07 - strained Ge 150 100 50 0.0 0.2 0.4 0.6 0.8 Effective Field (MV/cm)

Fig 4: 65 nm strained Ge MOSFET fabricated at IMEC on wafers grown at Warwick.

Fig 5: Hole mobility boost from strained Ge by 70%, including boost at high field (long channel devices).

Interest in the Ge channel remains intense particularly as n-channel work now looks as promising as the initial p-channel. There has been very significant work looking at sGe devices on the reverse graded 80% VSs. These VSs were considered sufficiently smooth for this early work and 25, 200mm wafers complete with sGe overgrowth were shipped to IMEC to access their low temperature short-channel process (Fig 4). These produced some very interesting device data showing that this level strain yielded significant mobility enhancements (up to 70% compared to the bulk Ge devices) (Fig 5) and drive current enhancement up to 35% in 100nm devices. Short channel device performance was, however, compromised by local strain relaxation in the halo implanted regions causing a progressive loss of the mobility advantage in shorter channel devices (Fig 6). Following this work an implant-free process is being developed at IMEC, showing considerable promise in short channel bulk Ge MOSFETs.

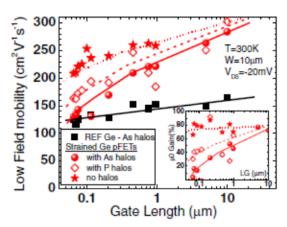



Fig 6. Low-field mobility of holes in strained and relaxed Ge pMOSFETs as a function of gate length showing the effects of different halo implants.

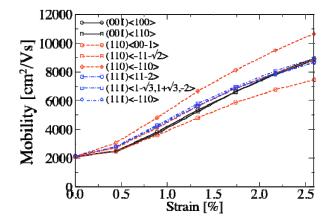
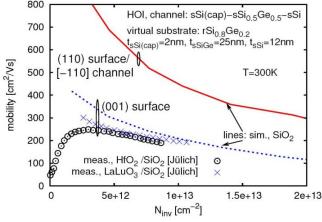
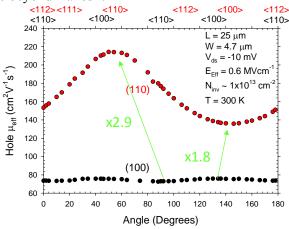





Fig 7: Variation of Ge hole mobility with strain for different substrate/channel orientations. The maximum strain of 2.6% corresponds to 60% Si in the relaxed Si<sub>1</sub>. <sub>x</sub>Ge<sub>x</sub> substrate.

Related simulation work (Glasgow) indicating the advantage of sGe as a channel material particularly for different crystallographic orientations (Fig. 7), with (110) showing particular promise, especially with OI platforms, which avoid high channel doping – which can kill this advantage. This activity continues looking at both hole and electron mobility enhancements in (110) and (111) orientations and new funding is being sort. A further batch of sGe devices is being undertaken very recently at KTH. It was intended that the gate dielectric was to be the Juelich's very exciting  $LaLuO_3$  and work was carried out involving a passivating  $Al_2O_3$  layer to produce a working gate stack ( TiN gate metal) on r-Ge and s-Ge channel layers (Fig 8). This was however not ready in time and an alternative gate stack fabricated at KTH is being used. This device batch complete with a qualified NiGe contacts is scheduled for completion very shortly. This work on sGe devices involving KTH, Warwick and Juelich will continue beyond Nanosil.





**Fig 8:** Mobility characteristics of strained SiGe HOI (001) and (110) PMOS with different gate oxide dielectrics.

Fig 9: Mobility in (110) Si depending on channel direction.

#### (100) heterostructure-on-Insulator (HOI) Platforms

These structures enable enhancement of both electron and hole mobilities by combining tensile strained Si and compressively strained SiGe layer OI. In all cases high k dielectrics were used in the gate stack. High mobility short channel p-MOSFETs with compressively strained Si<sub>0.5</sub>Ge<sub>0.5</sub>/sSOI channel and TiN/HfO<sub>2</sub> or TiN/GdScO<sub>3</sub> gate stacks were demonstrated (Juelich).

Good short channel (100 nm) behaviour was seen and hole mobilities as high as 260 cm<sup>2</sup>/Vs were achieved and approx 200 cm<sup>2</sup>/Vs was obtained in strong inversion, about a 2.5x enhancement compared to Si/SiO<sub>2</sub> devices. This all indicates good potential for further scaling. Simulation work (TUBS) showed good agreement with this mobility behaviour and that further enhancements were to be had from comparable (110) platforms (Fig 8).

## (110) Platforms

Some early work was undertaken involving (110) oriented Si substrates.

#### a) Hole mobility enhancement

Hole mobilities were measured (Warwick) in devices fabricated at KTH in high inversion on (110) Si layers grown by CVD. Mobility enhancements approaching x3 were seen depending on channel direction, similar to previously reported (Fig 9). However, simulation by Granada indicated these arose from variations in effective mass in the heavy hole band as opposed to scattering variations.

#### b) Global uniaxial strain

Uniaxial strain is optimal for mobility enhancement in many cases and a global uniaxially strain platform is a potentially significant development. A thin (50nm) SiGe layer was deposited on (110) Si, followed by a 5nm thick Si layer(LETI). The SiGe was then relaxed using the Juelich process, creating a smooth tensile strained top Si layer where strain relaxation was predominantly in the [100] direction (Fig 10).

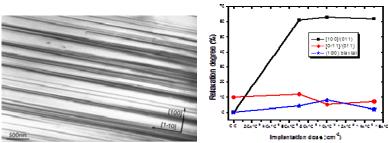



Fig 10: Uniaxial strained (110) Si, showing anisotropic relaxation

#### FP1.2 Very Low Schottky Barrier (SB) MOSFETs

It is widely recognized that source/drain (S/D) engineering takes an increasing importance in the development of leading edge CMOS generations because of the increasing impact of S/D series resistances on transistor performance. To address this challenge, Flagship project 1.2 has proposed to implement metallic S/D combined to a dopant segregation (DS) strategy to control the doping profile of S/D regions and to mitigate the impact of high thermal budget on new sensitive materials introduced in the gate stack. The first benefit is to potentially reduce the specific contact resistance of the metal/semiconductor junction, while keeping activated dopants sharply localized at the interface. The second benefit is to dramatically lower the junction annealing temperatures to ensure compatibility with many candidate material systems used in alternative gate stacks that cannot stand high temperature processing. By demonstrating performance comparable to conventional implanted and annealed contacts, the DS-SB technique becomes highly relevant for future implementation. Over the of entire duration of the NANOSIL project, significant advances have been achieved within the framework of FSP1.2 bearing on 'Very Low Schottky Barrier MOSFETs', through the seven complementary tasks below: Over the full duration of the Nanosil project, the activity in this FSP1.2 has been the object of 48 peer-reviewed international publications, 30 of which in journals and 18 in conferences/workshops.

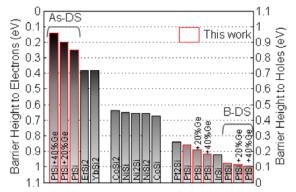
#### Schottky contact engineering by dopant segregation,

As far material engineering is concerned, dopant segregation has been extensively investigated for producing very low Schottky barrier heights, including some work on contact resistance for both n- and p-type source/drain. Many silicide/dopant couples have been studied and included rare earth silicides (erbium, ytterbium), the use of plasma doping, and how carbon incorporation can improve arsenic pile-up leading to a concomitant barrier lowering. The targeted sub-0.1 eV effective barrier height has been demonstrated through several dopant/silicide systems.

#### Integration issues and compatibility associated to alternative silicides

This task focused on integration strategies and issues associated to segregated Schottky S/D contacts. Original achievements have been obtained, such as the selective etching method of Pt with respect to PtSi using a sacrificial low-temperature germanidation process, the validation of Ti-capping layer strategies to protect rare-earth silicides from oxidation, the determination of the volume expansion upon platinum silicidation applied to nanowires and the dramatic yield improvement in SB-MOS process through accurate placement and engineering of gate-to-S/D spacers.

## Scalability of the DS technique


The scalability of the S/D dopant segregation on ultra-thin SOI has been consolidated through the integration of many different flavours of dopant segregated contacts. State-of-the-art results have been obtained like the demonstration of DS CMOS technology, the in-depth study of variability directly related to the DS Schottky architecture or the extremely low contact resistivity of the NiSi2 phase.

## Impact of strained silicon on dopant segregated Schottky contacts

The integration of Schottky S/D on strained SOI and the coupling of n- and p-type DS Ni and Pt silicides to strained SOI layers has been systematically studied for the first time. It has been shown that bi-axial tensile strained SOI layers (0-40% equivalent strain) contribute to lower the effective SB, as expected from valence

and conduction band shifts, and was amenable to the DS technique. Complementarily, ultra-thin epitaxial NiSi2 on highly doped SOI and on biaxially tensile strained SOI substrates was found to be about one order of magnitude lower than that of a NiSi layer on both As and B doped SOI and sSOI (Fig. 11). The measured SBHs for PtSi on sSOI are given in the table below.

|                      | No DS(φ <sub>bp</sub> meV) | B ITS DS(φ <sub>bp</sub> meV) | As ITS DS (φ <sub>bn</sub> meV) |
|----------------------|----------------------------|-------------------------------|---------------------------------|
| Unstrained SOI       | 250                        | 125                           | 270                             |
| sSOI (20% Ge buffer) | 210                        | 115                           | 220                             |
| sSOI (40% Ge buffer) | 183                        | 105                           | 160                             |



Final Report

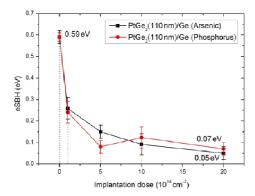
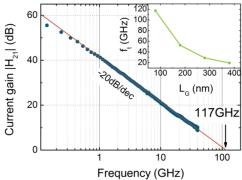
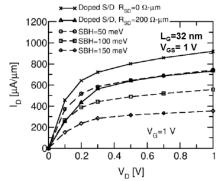



Fig 11: Extracted SBHs in strained Si, showing reduction with increasing strain and DS.


Fig, 12: Extractred SBH of PtGe2/n-Ge contacts as a function of implantation dose.

## Relevance of the DS technique on germanium


The synthesis of uniform NiGe and PtGe2 layers has been demonstrated on GOI and SiGe. Extremely low SBs to holes (<0.1eV) were obtained for both silicides. For PtGe2, As and P dopant segregation leads to less than 70 meV SBH to electrons (Fig 12), although it is not as effective in NiGe. The morphology of NiSiGe layer was shown to improve with C implantation into the SiGe, which increases the thermal stability of NiSiGe by about 200 °C.

## Benchmarking of the DS technique

The DS SB-MOS technology has been further consolidated with the demonstration (Fig 13) of state-of-the-art RF performance of 80 nm As-segregated NiSi n-MOSFETs featuring a unity current gain cut-off frequency of 140 GHz. This result completes similar performance at 180 GHz previously obtained for 30 nm p-MOSFETs.







Fig, 14: Multi-subband Monte Carlo simulation of FD-SOI SB MOSFET at 32 nm gate length.

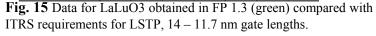
## Simulation and modelling of DS systems.

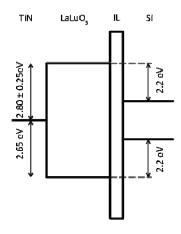
Finally, simulation studies based on drift-diffusion, Monte Carlo (Fig 14) and Green's function have supported the analysis and understanding of SB-MOSFETs operation in many respects encompassing both static and dynamic modes.

## FP1.3 Appraisal of Gate Stack Materials for End of CMOS Era

#### Focused activities on LaLuO3

At an early stage of NANOSIL, two gate dielectrics, GdSiO and LaLuO<sub>3</sub>, were selected as interesting choices for fulfilling the targets set in the DoW. As described in Delivery D.1.12, for GdSiO, which was successfully used for the 22 nm ITRS node in the PULLNANO project, the lower EOT values needed for the present project made it unpractical by technological reasons. Taking into consideration the outstanding properties of LaLuO<sub>3</sub>, we decided at the end of 2008 to focus on this oxide.


#### Sample preparation and measurement techniques


For the investigation of current leakage, electrical interface properties and bulk oxide traps, MOS capacitors have been used throughout the project, prepared on 3 inch, 1 – 10 ohmom n- and p- silicon wafers. The LaLuO<sub>3</sub> dielectric was deposited by molecular beam deposition (MBD) at FZ Jülich, combined with TiN metal contact preparation by sputtering at AMO. For n-type wafers an n<sup>+</sup> backside doping has been necessary, which was prepared at Chalmers. Samples were processed with physical oxide thicknesses of 3, 6, 20 and 40 nm in each set, and were sent out to all experimental groups. Special samples have been prepared for physical investigations (VASE, XPS, MEIS, AFM, STEM, EELS, IPE and Raman spectroscopy) at Liverpool, ITE and Tyndall. The rest of the experimental groups, including Liverpool, ITE, Tyndall, WUT, AMO, INPG/FMNT, Sapienza and Chalmers have been engaged in electrical characterization (C-V, I-V, G-V and multi-parameter admittance spectroscopy (MPAS)). FD SOI transistors were prepared by FZ-Jülich.

#### Current leakage

For our MOS-capacitor samples with EOT in the range 0.9 - 1.0 nm, a current density of 0.3 A/cm<sup>2</sup> was obtained at 1.5 V gate voltage. A simulation for "calibrating" results from MOS-capacitors to corresponding data for FD SOI transistors with 16 nm gate length was performed. From this, we found that MOS-capacitors with the materials data used are expected to have a 1.5 times higher leakage than the corresponding FD SOI devices. Therefore, in our comparison with the ITRS Roadmap, we use a leakage current vaue of 0.2 A/cm<sup>2</sup>, which fulfils ITRS requirements for LSTP and for 14 - 12 nm gate lengths. (Fig.15, below).

| Year of prod.                                                | 2013 | 2015 | 2017 | 2019 | 2021 | 2023 | This<br>work |
|--------------------------------------------------------------|------|------|------|------|------|------|--------------|
| Physical gate length                                         | 22   | 17   | 14   | 11.7 | 9.7  | 8.1  |              |
| Bulk,EOT (mm)                                                | 0.9  |      |      |      |      |      |              |
| Bulk, gate leak.<br>(A/cm²)                                  | 0.15 |      |      |      |      |      |              |
| MuG SO , EOT<br>(nm)                                         |      | 1.1  | 1    | 0.9  | 8.0  | 0.7  | 0.9 -<br>1.0 |
| MuG SO , gate leak.<br>(A/cm²)                               |      | 0.19 | 0.23 | 0.30 | 0.38 | 0.45 | 0.2          |
| Interface state dens.<br>(10 <sup>11</sup> cm <sup>2</sup> ) |      | 2    | 2.2  | 1.8  | 1.9  | 1.9  | 3.0          |
| Oxide state dens.<br>(10 <sup>18</sup> cm <sup>-3</sup> )    |      | 0.89 | 1.3  | 1.0  | 1.8  | 1.2  | 1.3          |
| Supply voltage (V)                                           |      | 0.95 | 0.85 | 0.85 | 0.75 | 0.75 |              |
| Sat. drive current<br>(m/V/μm)                               |      | 0.51 | 0.97 | 1.16 | 1.08 | 1.29 |              |
| Off-state current<br>(nA/µm)                                 |      | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  |              |





**Fig.16:** Band diagram for the TiN/LaLuO3/Interlayer/Si stack with barriers measured by XPS and IPE

## Interface states and interlayer

Similar to all high-k/Si interfaces investigated by us earlier (HfO<sub>2</sub>, PrO<sub>2</sub>, HfPrO<sub>2</sub>, Gd<sub>2</sub>O<sub>3</sub>, GdSiO, LaSiO), the P<sub>b</sub> centre is recognized also at the interface between LaLuO<sub>3</sub> and silicon. Furthermore, a second type of centres with a different mechanism for electron capture was found. The interface state concentrations obtained

were found to be close to the specifications for the 14 - 12 nm gate length requirements by ITRS (Fig. 15). Controlling the high-k/Si interlayer will be a crucial issue for reaching the end of the Roadmap at 8 – 5 nm gate length. The LaLuO<sub>3</sub> interlayer was investigated by XPS and found to be an SiO<sub>x</sub> like layer with a clear content of the metals included in the high-k dielectric, without a significant deviation from  $k \approx 4$  of this material. This was also supported by preliminary MEIS data.

Final Report

#### **Bulk** oxide traps

Bulk oxide traps were investigated by C-V, pulse C-V, variable angle spectroscopic ellipsometry (VASE), luminescence and charge carrier statistical considerations. An interesting agreement with theoretical literature estimates of energy level positions for oxygen vacancies in HfO<sub>2</sub> and with charge carrier statistics was found. Corresponding theoretical considerations for LaLuO<sub>3</sub> predict energy a level scheme for oxygen vacancies very similar to that of HfO<sub>2</sub>. Continued experimental confirmation in this area is vital for future development. The total concentration of bulk oxide traps, in the ITRS definition fulfils the requirements for 14-12 nm gate lengths.

#### **Energy barriers**

TiN/LaLuO<sub>3</sub> and LaLuO<sub>3</sub> energy barriers were measured by XPS and internal photo emission (IPE) with results as shown in Fig. 16.

#### **Transistor data**

Test transistors with LaLuO<sub>3</sub> gate dielectrics were prepared by FZ Jülich. Strained and unstrained SOI n/p-MOSFETs were fabricated with a full replacement gate process. The LaLuO3/Si interface showed a Dit level of 4.5 × 1011 (eV cm2)-1. Fully depleted n/p-MOSFETs with LaLuO3/TiN gate stacks indicated very good performance with steep subthreshold slopes of ~ 70 mV/dec and high Ion/Ioff ratios. In addition, strained SOI showed enhanced electron mobilities with a factor of 1.7 compared to SOI. Both electron and hole mobilities for LaLuO3 on SOI were similar to the mobilities reported for Hf-based high-k devices.

#### Relation to the ITRS Roadmap and conclusion

ITRS relevant data for the LaLuO<sub>3</sub> dielectrics investigated in FSP1.3 is shown in Fig. 15. Depending on future development of the LaLuO<sub>3</sub>/Si interlayer, we consider this dielectric as a potential candidate for fulfilling the requirements along the ITRS Road down to the tapered 8-5 nm end.

#### **VP1.4 More Moore Forum**

The visionary project was designed as a forum to exchange ideas, create discussion and debate, and generate synergies between partners on the topic of advanced CMOS. It was also the opportunity to discuss challenges that are not addressed within flagship projects. Finally, as these meetings also gather non-Nanosil speakers, it is also the occasion to embrace research carried out outside the network, and outside Europe.

Ten workshops were organised during Nanosil, details of which appear in D1.1, D1.5 and D1.10:

- 1. Satellite event of the Third SINANO Device Modelling Summer School, Bertoni, Italy, 2008 "Low Field Transport in Advanced MOSFETs"
- 2. Satellite event of ESSDERC 2008, Edinburg, UK "CMOS variability research in Europe: from atomic scale to circuits and systems"
- 3. Panel session at EUROSOI 2009,
  - "What is the killing advantage of multiple-gate SOI MOSFETs: electrostatics and scalability, transport or functionality?"
- 4. Fringe workshop at ULIS 2009, Glasgow, UK
  - "Open questions in the Ion Ioff optimisation in Advanced MOSFETs",
- 5. Panel session at the 2nd International Conference on CMOS Variability (ICCS).
  - "Are we ready for Design for Variability at sub 32 nm?",
- 6. Satellite event of the European MRS Meeting, Symposium I on "Silicon and Germanium issues for future CMOS devices"
  - "High-Mobility Channel Materials and Device Performance",
- 7. Panel session organized during EuroSOI meeting in 2010 Grenoble:
  - "SOI technologies: What kind or research for what kind of products?"
- 8. Workshop and panel before ULIS 2010 Glasgow, 17th March 2010: "High mobility nMOS substrates: strained-Si, Ge or III-V?"

- 9. Workshop and panel before SISPAD 2010 Bologna, 9th September 2010 : "Simulation and Characterization of Statistical CMOS Variability and Reliability"
- 10. Workshop after ESSDERC 2010, Friday, Sept. 17th, 2010

Final Report

"At the convergence between More Moore and More Than Moore / Beyond CMOS activities".

#### **Recommendations for European R&D:**

- 1. European R&D should pursue effort in developing FDSOI technologies, as it is now or never for SOI
- 2. More Than Moore activities should be encouraged and supported; however, without neglecting More Moore and Beyond CMOS. Projects that develop the three activities all together should be
- 3. As highlighted by variability, technology and design should work in closer contact. Europe has expertise in both areas. Research and projects integrating technology and design should thus be promoted.
- **WP2:** The main scientific and technical results of WP2 can be described and distributed by the following selected contributions delivered by the mainly experimental flagship project groups FP 2.1, FP2.3 and FP 2.4.

#### FP2.1 "Nanowires"

#### Vertical Si nanowires

Vertical nanowires based FET is an interesting opportunity for nanoscale devices because of its miniaturization capabilities and its compatibility with wires produced by top-down but also by bottom-up approaches. Nevertheless, this technology is faced on specific technological challenges due to the 3dimensionnal configuration. One example is the contacting of each termination of the Si NWs in order to electrically characterize the structures and to reproduce the configuration of S/D contacts of a future FET device. Previously we demonstrated the formation of highly dense vertical NW arrays by a top-down approach, with 100% reproducibility, and a perfect control of the diameter and the position. In a present work, we demonstrated the fabrication and characterization of two-terminal structures implemented on such NWs arrays defined by a top-down approach, as presented in Fig.1. Each termination of NWs is silicided and contacted to an external metal line. Thanks to a precise control of the radius and number of NWs in an array, we demonstrate a perfect reproducibility in the I-V characteristics (Fig.2) when a large number of NWs is considered (up to 5100 NWs in parallel) compared to a single NW, which proved to be efficient to considerably attenuate variability associated to the stochastic nature fabrication process steps at nanoscale. The temperature dependence and the non-linearity of I-V characteristics (inset Fig.2) are identified as a clear signature indicating that contacts dominate the overall resistance of the NWs arrays.

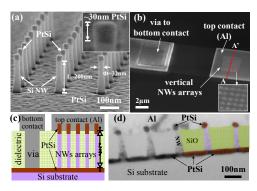



Fig. 1. (a) SEM image of vertical NW arrays (18x18=324 in parallel) with Φ=32nm, L~200nm, 100% reproducibility and hetero structure PtSi/Si. (b) SEM image (40° titled view) of Al extrinsic measurement pads. Inset: Image zoom on NWs arrays. (c) Schematic cross section view of the measurement set-up that can be schematized by two back to back metal-semiconductor

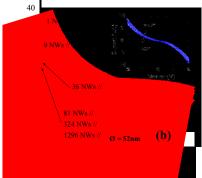
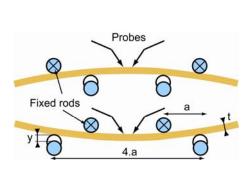



Fig. 2. average current per NW as function of the applied voltage @ 20°C of 2 contacts device with several NWs in parallel from 1 to 1296 with  $\Phi$ =52nm with, in inset, current evolution with the temperature.

junctions separated by a series resistance. (d) TEM image (cross-section view) of a NWs array embedded in a dielectric SiOx planarization layer. Al is deposited to act as a top contact.

## Self-heating characterization at UNEW of strained Si nanowires from EPFL


100 nm wide Si nanowires were fabricated using a bulk top-down Si nanowire platform, 0.8 μm lithography, hard mask and spacer technology. In the process, a sacrificial oxidation step was used to diminish the size of the wires and introduce tensile strain. Direct strain characterization on the suspended bucked Si NWs represents non-uniform lateral uniaxial tensile stress with a maximum almost at the middle of the Si NW. Strain measurements on EPFL devices have been performed by University of Newcastle. The maximum found tensile stress was 2.6 GPa and the peak of stress depends on the dimensions of the wire (thickness and length), oxidation conditions (temperature and duration) and hard mask. The wire length and wire width on the mask varies from 2.0-20.0 μm and 0.8-1.8 μm, respectively, offering a wide range of Si NWs with different strain and cross-sections (the longer and narrower wires offer suspended and buckled triangular Si NWs after oxidation and stripping steps suitable for gate-all-around architecture after gate stack deposition, however the shorter and wider wires offer attached wires to the substrate suitable for omega-gate architecture). The gate-stack includes ~15 nm SiO<sub>2</sub> (thermal oxide) and 300 nm of in-situ N+ doped poly-Si.

In collaboration with the Newcastle University, the self-heating effects in those devices have been investigated as a function of the wire cross-section. A clear increase of the self-heating impact for narrower wires was observed.

#### Junctionless Si nanowire MOSFETs

Prof. J.-P. Colinge and his research group at Tyndall have been working on the static characterization of junctionless Si nanowire multigate MOSFETs (uniformly and highly doped from the source to drain contacts). The Si nanowire is completed depleted at OFF state ( $V_g = 0 \text{ V}$ ) and is neutral at ON state ( $V_g > V_{th}$ ). The advantages related to the absence of source-to-channel and drain-to-channel junctions and the volume conduction in ON state have been highlighted. They have a near-ideal subthreshold slope, close to 60 mV/dec at room temperature, extremely low leakage currents, exhibit less degradation of mobility than classical transistors when the gate voltage is increased. Of course, due to the high doping level in the channel the poor carrier mobility is the major limitation of those novel devices. However, as for other advanced MOSFETs, strain channel engineering might be applied to improve the carrier mobility. Recently, in collaboration with UCL, static characterizations of junctionless multigate MOSFETs (MuGFET) as a function of an applied mechanical stress using a 4-point bending setup (Fig.3) have been performed. Improvement of current drive in n- and p-type silicon junctionless MOSFETs using strain has been demonstrated. The extracted piezoresistance coefficients are in good agreement with the piezoresistive theory and the published coefficients for bulk silicon even for 10 nm-thick silicon nanowires as narrow as 20 nm (Fig.4). These experimental results demonstrate the possibility of enhancing mobility in heavily doped silicon junctionless MOSFETs using strain technology. These results have been recently published<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup> J.-P. Raskin, J.-P. Colinge, I. Ferain, A. Kranti, C.-W. Lee, N. Dehdashti Akhavan, R. Yan, P. Razavi, R. Yu, "Mobility improvement in nanowire junctionless transistors by uniaxial strain", *Applied Physics Letters* **97**, 042114 (2010).



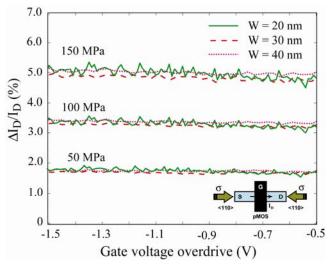



Fig. 3. 4-point bending measurement setup and relationship between the induced stress  $(\sigma)$  and vertical displacement (y) of the bottom movable rods. For all measurements, the spacing "a" was equal to 20 mm.

**Fig. 4.** The variation of drain current, ΔID/ID, as a function of gate voltage overdrive, VGS-VTH, in a p-type junctionless MuGFET characterized by fin width of 20, 30 or 40 nm for various applied compressive stresses.

## Low frequency noise characteristics of silicon nanowires (FMNT-IMEP)

Final Report

Low-frequency noise has been studied by INPG in collaboration with CEA-LETI in compressively strained  $Si_{0.8}Ge_{0.2}$  core-shell nanowire (NW) p-channel transistors compared with un-strained NWs. The noise has been well interpreted using the carrier number with correlated mobility fluctuation model. As a result, un-strained devices present more surface mode operation than c-strained ones, rendering more efficient the remote Coulomb scattering from oxide/Si cap interface charges and, thereby, increasing the  $\alpha$  coefficient in CMF process. According to the remote Coulomb scattering theory, a reduction of one decade of  $\alpha$  corresponds to about 1.7 nm additional remoteness for c-strained NWs, which is in agreement with the effect of silicon cap around  $1{\sim}1.5$  nm.

#### **Dynamic self-heating in Fin-FETs**

Dynamic self-heating effect has been characterized in n-channel FinFETs on Silicon-on-Insulator (SOI) platform. RF extraction technique has been deeply analyzed and dependence of thermal resistance on fin width  $(W_{fin})$ , number of parallel fins  $(N_{fin})$  and fin spacing  $(S_{fin})$  was studied.

One of the conventional techniques to characterize self-heating effect in MOSFET which does not require special structures is small-signal AC conductance. It is based on the assumption that at high frequencies channel temperature does not follow voltage oscillations, hence dynamic self-heating is removed. Conductance difference at low and high frequencies (where AC self-heating is removed) can be translated into device thermal resistance. Typical frequencies used in the AC conductance technique are in kHz-MHz range. However, as devices scale down thermal time constants are reducing into ns values and higher frequencies are required to reach self-heating-free characteristics. Indeed, thermal time constant is the product of thermal resistance and thermal capacitance. Whereas thermal resistance is inversely proportional to the surface area of the device, the thermal capacitance is related to its volume. In advanced non-planar devices volume-to-surface ratio is drastically decreasing which leads to smaller time constants. RF extraction technique up to a few GHz was applied to extract self-heating effect parameters in n-channel SOI FinFETs of various geometries. It was found that self-heating is mostly sensitive to number of parallel fins per gate finger (Fig. 9) and less to the fin width and fin spacing. Higher number of parallel fins, increased fin width and fin spacing improve thermal properties of Fin-FETs, however it may introduce additional issues into chip design, poorer electrostatic control and reduced integration density. These results have been obtained in collaboration between UCL and Newcastle University.

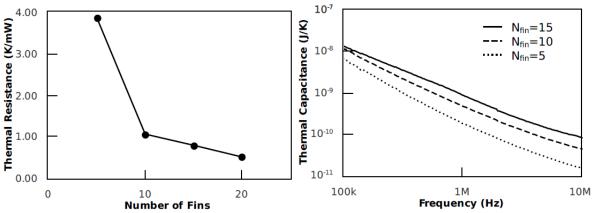



Fig. 9. Variation of thermal (a) resistance and (b) capacitance in the devices with different number of parallel fins per gate finger.  $W_{\text{fin}} = 22 \text{ nm}, S_{\text{fin}} = 328 \text{ nm}$ 

#### Nanomechanical characterization of Si nanowires

Nanomechanical characterization of released silicon nanowires using on-chip loading has been investigated. The aim of this action is to experimentally study the electro-mechanical properties of Si nanowires using the proprietary lab-on-chip methodology developed at UCL. The basic idea is to use internal stress present in one film (named actuator) to provide the actuation for deforming another film (named specimen) attached to the first film on one side and to the substrate on the other side. The measurement of the displacement resulting from the release of both films gives access to the stress and the strain applied to the test specimen provided the Young's modulus and mismatch strain of the actuator film are known. The Si nanomachines have been fabricated at Chalmers University of Technology and released and characterized at UCL. The fracture strain of Si nanowires as a function of the nanowire cross-section and length has been investigated (Fig. 11). Fracture stress as high as 9 GPa has been measured for nanowires with a cross-section of 50 nm x 50 nm. The next step is to measure the I-V characteristics of these strained Si nanowires to extract piezoresistance coefficients in two-dimensional confined Si nanostructures at high level of strain.

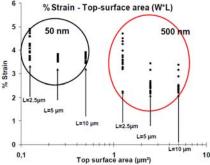
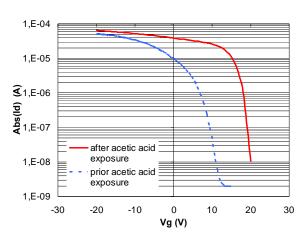
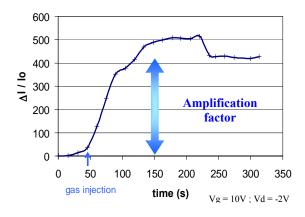
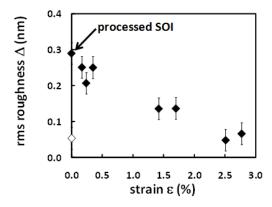




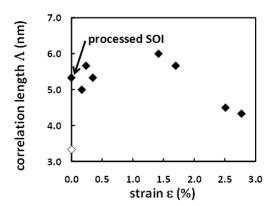

Fig. 11. Fracture strain in Si as a function of nanowire dimensions.

#### Si nanowires as gas sensors

Doped and undoped Si nanowires presenting cross-sections from 100 nm x 50 nm down to 25 nm x 50 nm have been functionalized and used to detect specific gases. A shift of more than 10 V (Fig. 12) of the Si NWs transfer characteristic has been observed when exposed to acetic acid vapour. The observed current change factor for a fixed back gate voltage of 10 V is of approximately 500 (Fig. 13). The sensitivity of Si NWs to other gases and for different dimensions is currently analyzed.







**Fig. 12.** Transfer characteristics of a Si NW presenting a cross-section of 100 nm x 50 nm before and after exposure to acetic acid vapour.

**Fig. 13.** Relative current change as a function of time at fixed back gate and drain drain bias conditions.

## Correlation between surface roughness and induced strain

The rms surface roughness and correlation length are key parameters to model carrier mobility in MOSFET inversion layers. Simulations indicate that only a reduction in rms roughness compared with bulk Si values can explain the high values of electron mobility observed experimentally in tensile strained silicon devices. However due to the limited characterization techniques available to measure roughness accurately on a nano and sub-nanoscale, to date such assertions have remained largely unconfirmed. Using the proprietary lab-on-chip concept of UCL, the paucity of roughness measurements by reporting on roughness parameters in uniaxial strained Si beams relevant for state of the art MOSFETs, nanowire and MEMS devices, with varying degrees of strain have been addressed. Nanoscale roughness is characterized high resolution AFM. The test structures comprise a silicon nitride actuator to induce a wide range of deformation levels in the Si beams, from 0.2% to 2.8%, equivalent to a stress range from 0.3 to 4.9 GPa. The rms roughness was found to reduce gradually from 0.29 nm for unstrained Si to 0.07 nm for 2.8% of strain. Similarly, the correlation length of nanoscale surface undulations in the direction of the applied stress reduced from 5.3 to 4.3 nm for the same range of strain values (Fig. 14). These results provide unequivocal confirmation that a reduction in rms roughness accompanies increasing tensile strain.





**Fig. 14.**  $\Delta$  and  $\Lambda$  as a function of strain in the Si beam for 95 x 95 nm<sup>2</sup> images. Error bars correspond to the maximum variation in rms calculation.

#### FP2.3 "Small Slope Switch"

The work corresponding to the 3<sup>rd</sup> periodic report of FSP2.3 was carried out on the topics and based on the collaborations described below.

Ferroelectric Tunnel FET (Fe-TFET) with a SiO2/Al2O3/P(VDF-TrFE) gate stack

Tunnel FETs have been fabricated with a ferroelectric polymer layer inserted into their gate stack (Fig. 1(a) and 1(b), SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/PVDF gate stack). This fabrication activity explains also why EPFL has used some resources under the consumable category. This novel family of devices combines the low subthreshold current of band-to-band tunneling transistors with the retention characteristics of ferroelectric devices, enabling interesting features for future one-transistor (1T) memory cells. Hysteretic behaviour of such devices is revealed by experimental measurements and its principle confirmed by calibrated two-dimensional numerical simulations. Low temperature measurements confirm the reduced sensitivity of the Tunnel FET subthreshold swing to temperature, and distinguish them from fabricated reference Fe-MOSFETs.

## Abrupt switch based on internally combined Band-To-Band and Barrier Tunneling mechanisms

A novel Tunnel FET concept has been designed (Fig. 1(c)), which makes use of internally combined quantum mechanical band-to-band and barrier Tunneling mechanisms to achieve improved performances and overcome the intrinsic low current drive limitations of conventional Tunnel FETs and the 60 mV/dec limitation of MOSFETs at room temperature. This new structure, including an ultra-thin dielectric between metal source and silicon channel, allows a sub-60 mV/dec average subthreshold slope (SS ~43 mV/dec) and a uniquely high  $I_{ON}/I_{OFF}$  ratio (~10<sup>11</sup>). The device principle and the potential performances are investigated by numerical simulation. (This project is developed under Nanosil in collaboration with the Steeper project, particularly in collaboration with partners from IUNET and also with additional funding from the Swiss Nanotera project. The thesis of the doctoral student (Luca De Michielis) is co-advised by professor Adrian Ionescu of EPFL and Luca Selmi of University of Udine. Luca De MIchielis received in 2011 the IBM Fellowship Award, which is an extraordinary achievement.

#### Advanced modelling and simulation of Tunnel-FET devices

Final Report

Thanks to a specific mobility action EPFL and IUNET-Udine collaborated to the assessment of device architectures and models for simulation of silicon Tunnel-FETs. As it is well known, differently from conventional MOSFETs, where the injection mechanism is governed by the emission above the source barrier, in Tunnel-FETs the carrier injection mechanism is replaced by the quantum mechanical band to band tunneling. Being inherently based on a quantum effect, a proper modeling of Tunnel-FETs in principle requires a full quantum transport approach, which is however extremely demanding from a computational point of view when applied to realist devices. In order to include the B2BT in TCAD simulations based on the drift-diffusion theory, several different models that describe the local and non-local B2BT as an additional generation-recombination mechanism have been proposed (Fig. 2a).

In the framework of the above mentioned researcher mobility, we have thus used a semiclassical modeling approach based on the solution of the BTE by Monte Carlo techniques made available by the IUNET-Udine partner to comparatively evaluate some of the limitations of current models for an accurate description of B2BT generation mechanisms and to examine conventional Tunnel FET architectures. In particular we explored the impact of different modeling assumptions (e.g. that on the shape of the tunneling path) on the relative performance of different device architectures (Fig. 2b). These analyses proved useful to assess the potentials of the different approaches for the optimization of the architecture of these new devices. Moreover they proved extremely useful to gain a deep insight in the impact of the B2BT mechanism on the device characteristics and led to new ideas on how to optimize Tunnel-FETs for enhanced performance. (This project is developed under Nanosil in collaboration with the Steeper project).

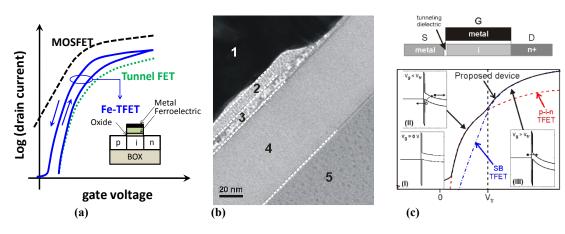



Figure 1: (a) Fe-TFET concept (qualitative comparison with Tunnel FET and Fe-MOSFET) suggesting more abrupt transitions than Tunnel FET and hysteretic behavior. (b) FIB-cut showing the cross section of the SOI and gate stack at the level of the transistor channel. (c) Band diagrams of a Schottky Tunnel FET with thin interfacial dielectric at source under different gate bias conditions.

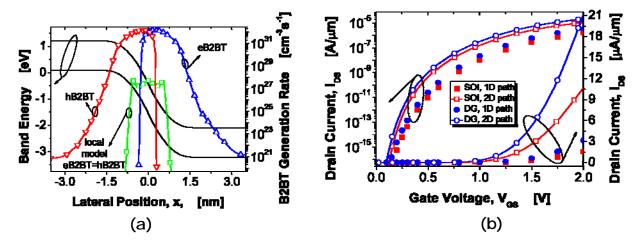



Figure 2: (a) Numerical simulation of a highly doped p-n junction showing the relevant differences between a local band-to-band tunneling model and a non-local one. (b) Comparison of the choice of the tunneling path on a SOI and a DG device. 1D path means tunneling parallel to the transport direction, whereas 2D path means tunnelling in the direction of the maximum valence band gradient.

## FP2.4 "Templated Self-Organization"

In this report, technical progress is described for activities (NW transistors, Single Electron memories and OD characterization and devices) defined in the previous annual report. These activities have been further focused for the last project period (starting from 06/2010) in accordance to the remarks of the reviewers, and, to the project tasks, Deliverable and Milestone ("D2.6 Nanowires fabricated by Templated Self-Organization", and "M2.7 Electrical operation of nanowire test devices fabricated by Templated Self-Organization). In accordance to the recommendations of the reviewers (2nd review, recommendation #6) the growth of Ge QD wafers was finished by 04/2010. The further activities have been concentrated on the implementation of these layers in devices and circuits and their characterization.

#### Bottom up Si-NW transistor (CEA, INPG, Tyndall), cooperation with FSP 2.1

We have investigated the way to improve the nanowires/metal contact resistance. In order to fabricate devices, nanowires were sonicated in IPA and then dispersed onto a p++ Si <100> substrate covered with a 200 nm thick Si<sub>3</sub>N<sub>4</sub> layer. Optical lithography was then used to define drain and source contacts. After development, contacts were metalized (Ni 80 nm / Al 120 nm) using an e-beam evaporator. A lift-off step was performed to remove resist and an O<sub>2</sub> plasma step was used to clean the wires from all resist wastes which could perturb electrical transport. Finally metallic contacts were silicided at 400 °C under Nitrogen flow using a Rapid Thermal Annealing (RTA) furnace and at varying duration. The electronic properties of the Si NW FETs as a function of gate and source-drain biases were measured using a semiconductor parameter analyzer (Keithley 4200) at room temperature and in ambient air.

In the present case, we have studied the kinetics of Ni silicide growth for an annealing temperature of 400 °C under  $N_2$  gas by varying the process time. The temperature has been chosen to obtain the less resistive NiSi. Measurements of silicide length were performed using a Scanning Electron Microscope (SEM) allowing us to differentiate the silicide from the silicon nanowire from the contrast observed in the secondary electrons

Prior to silicidation, devices were characterized with a probe station. A comparison of the behaviour of a device before and after silicidation is given in figure 2.4.1 showing a 100 fold increase in the current passing through the nanowire. Measurement of the saturation current flowing through the channel at  $V_{gs} = 0$  V gives

22 / 107

 $I_{\text{sat}} = 0.5 \text{ A.cm}^{-2}$ . This can be interpreted in the frame of a pure thermoionic emission model and gives a barrier height of Φ<sub>B</sub>≈0.45 eV, close to one of the two expected values for NiSi/Si barriers (eV), and shows that our nanowires have residual p type doping.

Typical I<sub>DS</sub>-V<sub>DS</sub> and I<sub>DS</sub>-V<sub>GS</sub> characteristics of silicided devices are shown in figures 2.4.1 and 2.4.2. The devices exhibit I<sub>ON</sub>/I<sub>OFF</sub> ratio up to 10<sup>5</sup> with a maximum ON current obtained for negative V<sub>GS</sub> values of the order of ~ 5 μA giving a current density around 28 kA/cm<sup>2</sup>. The characteristic in the ON state is linear with a device resistance around 300 k $\Omega$ , which corresponds to a resistivity of 133 m $\Omega$ .cm. However, this resistance is likely arising from one of the two diodes obtained at the contact between the silicide and the Si channel under backward bias, where transparency is increased by the strong band bending at the junction for decreasing V<sub>G</sub>.

We obtained a transconductance  $g_m \sim 1.2 \mu S$  giving us a hole mobility close to 200 cm<sup>2</sup>/Vs at 300K.

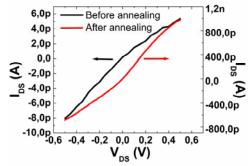



Figure 1.4.1 I<sub>DS</sub>-V<sub>DS</sub> characteristic of a SiNW FET with nickel contacts before and after annealing step at 400 °C for 30 s.

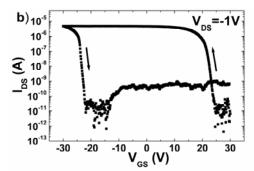



Figure 2.4.2  $I_{DS}$ - $V_{GS}$  characteristic of a SiNW FET with 200 nm Si<sub>3</sub>N<sub>4</sub> back gate insulator recorded at V<sub>DS</sub> =- 1 V. The on-off current ratio of this device is 2x10<sup>5</sup>. Arrows indicate either the positive to negative or negative to positive gate voltage sweep.

#### Joint flagship activity between FP 2.1 and FP 2.4 (horizontal growth & doping of NW)

For Si-NW transistor fabrication based on simultaneously grown networks of connected NWs between predefined Si pads on SOI, NW horizontal growth onto SiO<sub>2</sub> between the pad sidewalls has been investigated. Growth recipes using gold colloids dispersed via drop casting on test wafers patterned by UCL have been developed. When placed in contact with a pad sidewall, a gold colloid gives rise to a horizontal nanowire starting from the pad, as seen in the fig. 2.4.3 below. UCL patterned test wafer was sent to Tyndall for selective area deposition of gold and CMOS compatible Pt colloids at the source and drain pads using the dielectrophoresis technique.

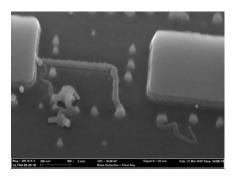
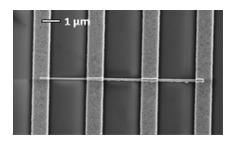
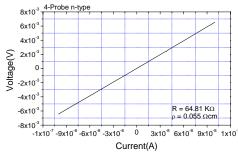
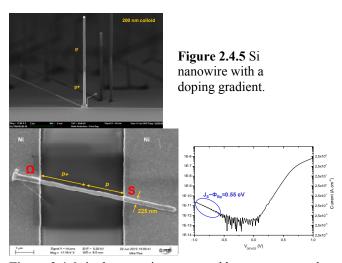




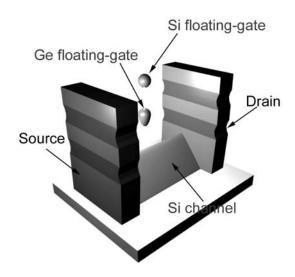

Figure 2.4.3 undoped Si NW grown from an Au colloid localized at the pad sidewall.


In addition to the above-mentioned work on the localization, the doping of nanowires using diborane (p type doping) and phosphine (n type doping) precursors mixed with silane has been characterized. The resistivities of single nanowires (see in figure 2.4.4) have been measured and incorporation of boron and phosphorous in nanowires has been checked.





**Figure 2.4.4** Single nanowire connected in a four probe configuration (left) and corresponding resistance measurement (right).


Moreover, doping modulation along a nanowire has been achieved by tuning the reactive mixture composition in the CVD tube during the growth (**fig. 2.4.5**). As an example, a nanowire Schottky diode has been fabricated with a heavily p doped end while the other was set p doped (**fig. 2.4.6**).



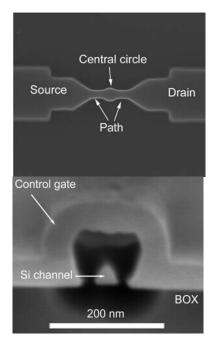
**Figure 2.4.6** single nanowire connected between a strongly and lightly p doped ends (left) and corresponding I(V) curve (right).

## Single electron memory (UCL, USTUTT)

The objective of this work is to realize a self-aligned single-electron memory (SEM). In order to obtain a long data retention time, single-electron memories with double nano floating-gates (fig. 2.4.7) have been fabricated, in which the upper floating-gate is charged/discharged by a few (ideally one) electrons from the MOSFET channel through a double tunnel junction separated by the lower floating-gate. When the size of the lower floating-gate is below 10nm, the quantum confinement and Coulomb Blockade effect induce the splitting of the energy band into a number of energy level at room temperature. The band-offset between the upper and lower floating-gates prevents the charge in the upper floating-gate from returning to the channel, thereby resulting in longer data retention time. In other words, the double floating-gates are analogous to an 'artificial dipole', which is embedded in the gate oxide between the control gate and the MOSFET channel. The electric field surrounding the 'artificial dipole' is weaker than that surrounding the floating-gate in the conventional single-electron memory device. Therefore, the charge can be stored in the upper floating-gate for a long time.



**Figure 2.4.7** Schematic view of a self-aligned double floating-gate single-electron memory.


The heterostructure used in this fabrication is composed of a  $Si/Si_{0.7}Ge_{0.3}/Si$  stack (20/20/50 nm) on a 145-nm thick buried oxide. A


pattern as shown in **fig. 2.4.8a** is then obtained on the heterostructure by lithography and Reactive Ion Etching with a hard mask of silicon nitride. The pattern is composed of a central circle connected to wider source/drain regions by narrow paths. After wet oxidation, the double tunnel oxides separated by the Si<sub>0.7</sub>Ge<sub>0.3</sub> layer is formed in the circle as shown in **fig. 2.4.8b**. The reason is that the interfaces between Si and Ge layers have fast etching and oxidation rates. In this case, the tunnel oxides vertically separate the circle region into top Si dot, middle Ge dot and bottom triangular channel, which are used as the upper floating-gate, lower floating-gate and the channel of the present memory device, respectively. The floating-gates are restricted to the central circle since the Si and Ge dots are completely oxidized in the narrow paths (**fig. 2.4.8c**). In the wide source/drain regions, their widths are large enough to avoid the formation of the tunnel oxides in the interfaces (**fig. 2.4.8d**). Therefore, the floating-gates are self-aligned to the channel and restricted in the central region. The structure is doped by arsenic for reducing the resistance of the source/drain regions. This step results in an n-type junctionless nanowire channel. Then a control gate is formed by depositing a layer of polysilicon or Pt layer. To further simplify the fabrication process, we also design the memory device with two side gates.

The hysteretic behavior of the device at room temperature is shown in **figure 2.4.9 a**. When the gate voltage is swept from 0 to 10 V, three shifts are observed, while two back shifts are observed when sweep is reversed. This indicates that single electron is injected into the upper floating-gate. The diameter of the upper floating-gate obtained from **figure 2.4.9 b** is 7.5 nm which is compatible with the Coulomb charging and quantization energy at room temperature so that the memory operation can be performed by one electron only. To further support single-charge injection, the time evolution of the drain current is carried out, in which a negative pulse of 10 V is first applied to empty the floating-gates, then a constant voltage of 8.2 V is set and hold on during the measurements. **Figure 2.4.9 b** demonstrates a typical  $I_d$ -t characteristic. When one electron is injected into the floating gate, an abrupt reduction of drain current is observed. The quantization of the current steps, of  $\Delta I_d = 0.3$  nA, confirms that they stem from single electron injection in the floating-gate.

To conclude, we have reported a new method for fabricating fully self-aligned double floating gate single-electron memory devices using a Si/ Si<sub>1-x</sub>Ge<sub>x</sub> /Si heterostructure. The fabricated devices have an upper Si nanocrystal floating gate ( $\sim$ 5 nm) and a lower Ge nanocrystal floating gate ( $\sim$ 20 nm). Both floating gates and the nano-scale channel of the device are fully self-aligned. The size of each floating gate can be precisely controlled by modulating the thicknesses of the Si and Si<sub>1-x</sub>Ge<sub>x</sub> alloy layers. The energy barrier for preventing charge leakage is induced not only by quantum effects but also by the conduction band-offset between Ge and Si, which makes the energy barrier higher and relaxes the limitation of the lower floating gate size. The present memory devices demonstrate a long retention time and a quantized threshold voltage shift at room temperature. They have basically the same write/erase speed as single-electron memories with single floating gate.

Final Report





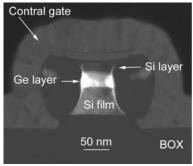
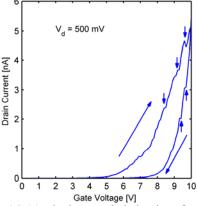




Figure 2.4.8 (a) The top view of the single-electron memories with double nano floating-gate fabricated on the heterostructure. (b) Cross-sectional picture of a SEM device in the centre. (c) Cross-sectional picture of a SEM device in the path. (d) Cross-sectional picture of SEM device in the source/drain regions.



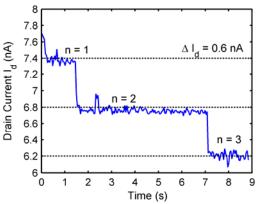
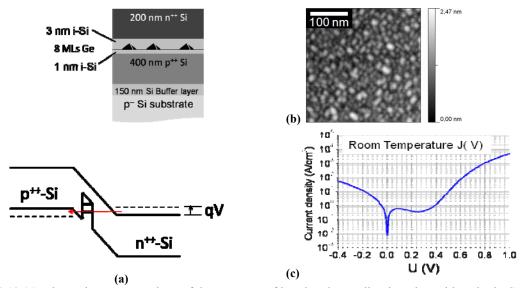



Figure 2.4.9 (a) The hysteretic behavior of a SEM device at room temperature at Vd = 500 mV. Many Id shift can be seen when the gate voltage is swept forth and back. (b) Time evolution of drain current for a constant gate voltage of 8V. The different steps in Id-t are an evidence for single electron injection in the floating-gate.

## **QD-Tunneling Device and Circuits (USTUTT, Chalmers, IMEL, RWTH, UPS)**: Interband tunneling at room temperature, high frequency circuit demonstration


Tunneling is a fast phenomenon and the corresponding negative differential resistance (NDR) I-V curve allows device applications in high frequency and multi-value storage. Ge-dots in Si open that field for Si based nanoelectronics.

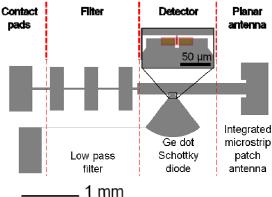
Carrier tunneling requires very thin barrier width which results in high capacitance. By the introduction of Single or vertically aligned dot multilayers in the barrier region, the barrier width can be tailored and made wider. Hence the device capacitance is decreased and the high frequency performance is improved. In the case of use of vertically aligned dot multilayers, the layer separation should be small enough to allow carrier tunneling from one dot to the other.

Interband tunneling junctions with a single Ge small QD layer have been fabricated. The device layer structure and the energy band diagram schematic representations are shown in figure 2.4.10a. The Ge dot layer is included in the barrier region stacked between two very thin (1-3 nm) intrinsic Si layers. As shown in the AFM image (figure 2.4.10b) the OD diameter is below 20 nm. The growth of the dots and capping layer was performed at low temperature (350°C) in order to form pure small Ge dots and to avoid their intermixing with Si.

RT-NDR with Ge-QD was demonstrated. Earlier attempts required high temperature annealing leading to intermixing. **Figure 2.4.10b** shows the current density as function of the applied voltage measured at room temperature. A figure of merit for NDR devices is the peak to valley current ratio (PVCR). For the realized diodes a maximum PVCR of 1.6 has been achieved.

Refined understanding needs knowledge of capture/emission processes. For this a cooperative effort (Chalmers/ Warsaw) in DLTS experiments and Quantum effect based interpretation is performed.

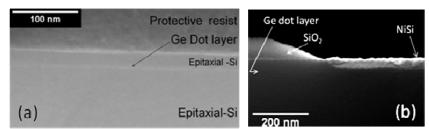



**Figure 2.4.10** (a) schematic representations of the structure of interband tunneling junction with a single Ge QD layer and of the corresponding energy band diagram. (b) AFM image of Ge quantum dots obtained following the deposition of 8ML Ge at 350°C by MBE. (c) Current voltage characteristic at room temperature of interband tunneling junction with a single Ge QD layer.

In addition, NiSi Schottky diodes with Ge dots buried below the metal-semiconductor junctions have been fabricated. These diodes have cut-off frequencies up to 1.1THz (calculated from S-parameter measurements up to 110GHz). The implementation of Ge QD Schottky diode in an 89GHz RECTENNA for mm-wave power detection is demonstrated.

The RECTENNA layout is shown in **fig. 2.4.11**. It consists of an antenna unit, a rectifying unit and a filter unit. The antenna unit is formed by an integrated microstrip single patch antenna. The rectifying unit (detector) is made of a radial stub as RF short and a Ge QD Schottky diode which structure is described below. The filter unit is a low pass three stages LC-filter.

The whole RECTENNA is designed in microstrip topology. To suppress resonances within the substrate and to keep attenuation low, the substrate is thinned to a thickness of 200 µm.


The antenna operates as a band pass and only its resonant frequency is received. One half of the received signal is shortened to the virtual mass using a radial stub while the remaining half is smoothed by the low pass filter.



**Figure 2.4.11** Layout of the RECTENNA with single patch antenna.

The Schottky diode structures with Ge QDs have been grown by Molecular Beam Epitaxy (MBE). The MBE growth starts by 150nm thick intrinsic silicon buffer layer deposited at 600°C. Then 500nm of an antimony highly doped ( $10^{20} \text{cm}^{-3}$ ) silicon layer (HDL) is grown at 375°C. It is used as the ground contact of the diodes. Finally, the so-called Schottky Layer (SL) is deposited. The SL is made of a Ge dot layer stacked between two intrinsic silicon layers which total thickness is 300nm. The dot layer is formed by 6ML of Ge grown at 500°C. The intrinsic silicon layers are grown at 600°C except the first 8nm of the dot capping layer which are deposited at 330°C to prevent QD shape modifications or intermixing with Si. An example of Schottky layer with embedded Ge dot layer at 20nm from the surface is given in **fig. 2.4.12a**.

The dot capping layer thickness in SL is chosen taking into account the Si consumption during NiSi device metallization to obtain the dot layer embedded at the desired distance from the NiSi-Si Schottky junction. **Figure 2.4.12b** shows an example of Schottky layer with embedded Ge dot layer at 40nm from the surface as it can be seen below the oxide where no NiSi has been formed. After the NiSi formation, the dot layer is only at about 7nm from the NiSi-Si interface.



**Figure 2.4.12** Cross-section Scanning Electron Microscopy micrographs of Schottky layers (with embedded Ge QDs) near the surface (a) following MBE growth and (b) following NiSi formation and unreacted Ni removal.

Following MBE growth, the integration process in RECTENNA circuit begins. First, the upper mesa is defined by dry etching the Schottky layer outside the mesa area until the HDL is unveiled. Second, the HDL is dry etched down to the substrate outside the lower mesa area which includes the upper mesa. This ensures the isolation of each diode from the others. The etch edges are passivated with SiO<sub>2</sub>. Contact holes are then opened by removing the oxide from upper and lower mesa portions for Schottky and ground contacts, respectively. The removal of 90% of the oxide thickness is performed by dry etching. The remaining oxide is wet etched by Buffered HF in order to prevent active layer thickness modification or dry etching induced surface damage. For the formation of the NiSi-Si junctions, a thin Ni layer is sputter deposited then reacted with Si inside the contact windows during an annealing at 450°C (under N<sub>2</sub> ambient) to form NiSi. Outside the contact windows the remaining unreacted Ni is removed. Finally, for the interconnect aluminum is deposited and structured. The resulting Ge QD Schottky diode is schematically represented in fig. 2.4.13a.

The Ge QD Schottky diode considered in what follow has a dot capping layer thickness of 25nm. 10nm of Ni has been used for NiSi formation which consumes about 17nm of Si from the cap layer. Therefore, the Ge QD layer is at about 8nm from the NiSi-Si Schottky junction.

In order to extract the series resistance ( $R_s$ ), the ideality factor ( $\eta$ ) and Schottky barrier ( $\Phi_B$ ) DC-IV measurements have been carried out. **Fig. 2.4.13b** shows the DC-IV characteristic of Ge QD Schottky diode having 6µm length and 1µm width. The ideality factor  $\eta$  is equal to 1.05 while the diode saturation current density  $J_s$  is equal to 1.4x10<sup>-4</sup> Acm<sup>-2</sup>. This  $J_s$  value corresponds to a Schottky barrier  $\Phi_B$  of 0.66V. Also, a value of  $40\Omega$  for the series resistance ( $R_s$ ) has been extracted.

Vector Network Analyzer (VNA, Anritsu 3700 system, up to 110GHz) is employed for high frequency characterizations. The diode high frequency cannot be obtained directly but through a de-embedding procedure. New de-embedding procedure proposed recently by H. Xu and E. Kasper in SiRF 2010 has been applied. It uses open and short structures having the same design as the measured diode.

The cut-off frequency is  $f_{co} = 1/(2\pi R_S C_0)$ . The calculated cut-off frequency of 6µm long and 1µm wide diode is 1.1 THz considering  $R_S$  of 40Ω and  $C_0$  of 3.8fF. This  $f_{co}$  is only valid when the diode is under Mott operation, i.e. when the full Schottky layer is depleted which corresponds to minimum diode capacitance. Forward biasing the diode above the Mott voltage causes the depletion layer width to shrink and therefore a diode capacitance increase and cut-off frequency decrease. The Mott voltage of the current diode is 0.3V.

In order to characterize the RECTENNA, the Vector Network Analyzer (Anritsu 3700 system) and a horn

antenna are employed as power source and as radiation element, respectively (fig. 2.4.14-a). A Keithley 2400 Digital SourceMeter is used to supply a biasing current and to measure the output DC voltage. The conversion voltage  $\Delta V$  is measured as follow. At a given biasing current in the RECTENNA, output voltages are measured without  $(V_0)$  and with  $(V_{RF})$  RF power radiation from the horn antenna. Then  $\Delta V$  is obtained as the difference between V<sub>RF</sub> and V<sub>0</sub>. Fig. 2.4.14-b shows the measured conversion voltage as a function of the frequency at a fixed biasing I=10μA. The frequency dependence of the conversion voltage demonstrates clearly the detector function. The middle frequency (89GHz) and half width of the detector are mainly defined by antenna dimension.

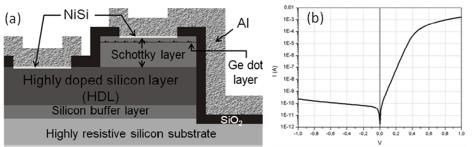



Figure 2.4.13 (a) Schematic representation of Ge QD Schottky diode. (b) DC-IV characteristic of Ge QD Schottky diode having 6µm length and 1µm width.

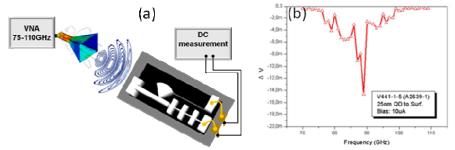



Figure 2.4.14 (a) Schematic representation of the measuring setup for the RECTENNA. (b) Conversion voltage of the RECTENNA as a function of RF radiation frequency.

#### Carrier capture / emission from Ge QD

When quantum dots (QDs) are used as electronic device elements, information about capture and emission mechanisms is important for achieving a detailed structural design. Influences of thermal and tunneling processes in relation to the distributions of confined energy states and charging effects are crucial for such applications.

In the present investigations, two types of structures were prepared, which differed with respect to the conditions of the Ge-layer deposition and capping processes. In the first group, the Ge layer was deposited at 550°C at a growth rate of 0.2 ML/s using a two-step process for the capping, including a first 5 nm thick Si:B cap layer grown at 330°C followed by deposition at 600°C to approach a final thickness of 400 nm. In order to have the QDs placed in a depletion region for DLTS investigations, Schottky diodes were prepared by evaporating Al dots on the cap surface. By the same reason, structures of the second type were made as n<sup>++</sup>-pp<sup>++</sup> junctions. Here, the Ge layer located in the p-type Si was 125 nm below the n<sup>++</sup>-Si:Sb layer. Both the Ge and p-Si layers were grown at 350°C, whereas a 200 nm of n<sup>++</sup>-Si was deposited at 431 °C. In both cases, QDs were formed from an 8-ML thick Ge layer.

Deformation in Ge (3.3-ML)/Si quantum well (OW) structures of the first type has been characterized by HRTEM and DLTS. Strain distribution in the QW and a modulation in the Ge layer dark contrast were investigated in terms of QW thickness variation. DLTS spectra plotted as contour maps on a reverse voltage  $(V_R)$  versus temperature (T) plane reveal large variations of the energy level distributions in the QW across the wafer area. The developed method can be used as a tool for diagnosis of QW uniformity.

#### MOS on buried Ge stressors (USTUTT, Cooperation with WP3)

The effect of Ge dot layer buried in the channel region of a MOSFET is investigated. MBE growth (USTUTT) of reference and buried Ge dot layers (4 wafers, fig. 2.4.21) for both n- and p-type MOSFET have been performed. The QD layer as a stressor is placed 10 nm below the channel. The structure is retrograde doped to allow for a low channel doping. The depth of the QD (fig. 2.4.21) was set back to 10nm from the surface, to allow small Si removal by processing. The lateral size of the Ge dots (15 nm) was chosen smaller as the applied gate length so that a mean value for the stress effect will be measured. Size of the dot and its Ge content can be tailored by the growth conditions. Here we used a low growth temperature (350 °C) to get pure Ge dots. Earlier investigations with higher growth temperatures resulted in SiGe dots because of intermixing of Ge atoms with the underlying Si substrate atoms. The doping (10<sup>18</sup> cm<sup>-3</sup>) was set back 50nm from the surface to allow for diffusion during processing. B and Sb (Sb is a slow diffusing species) were used as dopant atoms for p-type and n-type doping, respectively. Uniform doping levels and abrupt junctions were obtained by specific dopant incorporation techniques (pre build up, flash off of adatom layers). The processing of the devices is performed and reported within WP3.

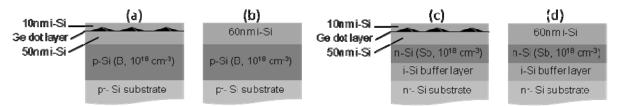



Figure 2.4.21 Schematic representations of the layer structures for (a) n-MOS and (c) p-MOS with buried Ge stressors and for reference (b) n-MOS and (d) p-MOS devices. The doped layer below the channel is grown as step doped (10<sup>18</sup> cm<sup>-3</sup> at about 50 nm below the channel). After implant anneal this should result in a retrograde doping with low doped channel and increasingly doped well.

## Assessment of manufacturing potential

Self-organized structures offer a rich variety of shapes and geometries which are claimed to be useful for nanoelectronics for mainly two reasons:

- Novel or improved electronic and photonic properties. This is caused by size and shape dependent quantum effects and by the specific surface and interface quality of self-organized created nano-objects. These follow a route which is frequently dictated by free energy minimization. A famous example is the three-dimensional (3D) formation of quantum dots from lattice mismatched materials. Layer formation and etching will result in an interface with a misfit dislocation network if the layer thickness is above a critical thickness. Self-organized growth follows a 3D mode with pseudomorphic (dislocation free) interface but higher stress values.
- Reduction of critical process steps in conventional device fabrication or even design of a new manufacturing paradigm for nanoelectronic integrated circuits. The first idea is rather straightforward, its successful implementation will depend on compatibility aspects with already existing conventional manufacturing. In this specific network activity we focused on the latter topic of a new manufacturing paradigm. The group brought in a broad background knowledge of different nanostructures, a European sight on research potentials and manufacturing efforts, and a strong emphasis on the need for a complete chain from nanoelectronics to information and communication products.

#### The Paradigm of Self-Organized Nanoelectronic Manufacturing

In conventional manufacturing a nearly unbelievable progress in lithography allowed the radical scaling of device dimensions and the tremendous increase in integrated circuit complexity. The Europeans are underrepresented in this market although they invented essential processes to pave the way to the existing status.

Europe has to come up with nanoelectronic manufacturing models otherwise we will be cut from modern growth areas like information and communication.

We propose to ground on self-organized structures for the future scaling of device dimensions.

Targeted manufacturing is based on minifabs which increase flexibility for new products, reduce the time frame to mass production, and minimize investment costs.

Final Report

Within this network we explored technical routes, we identified roadblocks and technical challenges, and we suggest directions of future efforts.

## **Technical Routes and Challenges**

Details of the different routes are given in the technical reports. Here we summarize the categories.

- Silicon nanowires grown on predefined dots. Main progress was shown in using CMOS compatible materials (silicides) and in templated deposition of starting dots (electrophoresis on given S/D metal). Roadblocks could be given by the need for lateral wire growth in predefined directions.
- Subtractive Si/ Ge wire and dot formation by templated etching and oxidation processes. This process is highly compatible with conventional processing tools. Single electron demonstrators could be realized. Technical challenges are process control and interface quality.
- Silicon dots embedded in oxide. Strengths of this method are small sized dots (2-5nm) and easy fabrication. Roadblocks for nanoelectronics are the low on-currents and their variability caused by the tunneling through the embedding oxide. We see application potential outside in photovoltaics because of the extended and tunable bandgap.
- Germanium dots in Si produced by Stransky-Krastanov (S-K) growth. High Ge content and small dot size was realized by low growth temperatures in prepatterned oxide windows. Self-organized prepatterning with Si technology compatible materials was demonstated. We call a sequence of selforganized processes coupled selforganization.

**Table 1: Assessment of investigated methods** 

| Method     | Si wire growth | subtractive wire/dot   | Si dot in oxide | Ge-dot |
|------------|----------------|------------------------|-----------------|--------|
| Roadblocks | lateral wires  | -                      | on-current      | -      |
| Challenges | seed           | interface              | variability     | size   |
| Prospects  | FET            | single electron device | photovoltaics   | high f |

## Recommendations

Fabrication schemes following a deterministic patterning dominates now completely microelectronics manufacturing. Far East region benefitted most, Europe least from these manufacturing routes.

For improving Europe's competition position research in a different manufacturing route is advised.

This new manufacturing paradigm is based on coupled self-organization processes for future aggressive nanopatterning. By this measure the investment volume increase will be stopped, allowing smaller plants (minifabs) and higher flexibility to introduce different products.

Research on new self-organized manufacturing routes should be intensified. Recommended routes are based on templated nanowire/-dot formation from subtractive processing and S-K growth.

#### **Conclusion and Outlook**

Progress in NW transistor fabrication (CMOS compatible seeds), in successful realization of SEM (with single charge injection into the floating gate) and in Ge QD devices (RT- NDR device, QD Schottky diode)/circuits (89GHz RECTENNA) and characterizations has been reported. Moreover, the manufacturing routes using the different self-organized processes investigated in this project (FSP2.4 "Templated Self-Organization") have been assessed with respect to their roadblocks, their challenges and their prospected application fields.

• **WP3:** Within WP3 a substantial amount of work has been performed in order to integrate process modules developed within the FPs into the MOSFET process line of the JPP. Results from this work includes research results as described in the joint publications by the partners but also development of the process modules and tailoring of the MOSFET process line in the JPP in order to integrate new materials and/or new architectures. The integration work has been performed in a close connection with the planning and execution of the MOSFET batches within WP3. First a condensed description of the integration work is provided

followed by description of the batches of MOSFETs fabricated within the JPP of NANOSIL. An extensive description of the integration work and the batches can be found in deliverable D3.2, D3.3, D3.4 and D3.5.

## **Development of process modules**

The process modules that was incorporated in MOSFET batches were 1) sSOI on standard wafer size in JPP, 2) LaLuO<sub>3</sub>/TiN gate stack, 3) SB source/drain (S/D) contacts, 4) extremely low temperature ( $T_{max}$ <450 °C) MOSFET process for strained Ge channels (described in sGe batch below) and 5) a gate last process for long channel devices ( $T_{max}$ <150 C).

#### sSOI on the standard wafer size in JPP

Strained silicon on insulator (sSOI) wafers was delivered to the consortium by SOITEC. The wafer size was 200 mm and the top Si layer was strained 1% (20% Ge equivalent). The buried oxide was 145 nm thick and the silicon thickness was 15 nm. These wafers were used in the JPP batches processed for the FPs.. In the JPP the standard wafer size is 100 mm and integration work was conducted to use 200 mm sSOI wafers as starting material. The sSOI wafers were thinned and resized with major wafer flats for use in 100 mm semiconductor tools. Each 200 mm wafer yielded two 100 mm wafers. A significant result is that the resize process has been qualified and is used within the JPP for all starting material on 200 mm wafers such as SOI, sSOI and sGe on virtual substrates.

## Integration of LaLuO3/TiN gate stack

During NANOSIL several experiments and batches has been performed to adopt the MOSFET process line and the LaLuO3/TiN deposition for successful integration in the JPP platform. An improved MESA isolation technique was developed to reduce possible gate leakage due to non-conformal MBE deposition of LaLuO3. A chemical oxide process was developed and inserted before MBE growth and was shown to reduce gate leakage. The JPP MOSFET process was designed to accommodate a relatively low temperature (Tmax<700 °C) process after LaLuO3/TiN deposition since it is known that high temperature processing is detrimental to the performance of the gate stack. The integration work included the formation of thin spacers, formation of low resistance SB S/D contacts and finally adoption of a low temperature contact hole and metallization process. At the end of NANOSIL a gate last process was developed in order to be able to fabricate LaLuO3/TiN MOSFETs with an extremely low (T<150 °C) temperature process that allows the evaluation of the temperature budget of the gate stack. Source/drain implantation and activation was performed before the gate stack using a dummy gate as mask. Patterning of the high-k/MG stack was aligned to S/D implants using I-line lithography and a 0.1 μm gate to S/D overlap. The gate last process enables fast (<1 week) fabrication of MOSFETs after high-k/MG deposition

#### SB S/D contacts

The dopant segregated SB S/D technology researched within FP1.2 was integrated as a S/D technology in the JPP. Dopant segregation of B and As was employed to modulate the effective barrier height of PtSi close to the conduction (As) and close to the valence band (B). PtSi was placed in close proximity of the inversion channel by the use of thin oxide/nitride ( $t_{TEOS}$ =5 nm/ $t_{SiN}$ =10 nm) spacers (see Fig. 2). The DS SB contact processes yielded an  $R_{SD}$  of about 1 k $\Omega$ µm on NMOSFETs (see Fig. 3) on fully depleted SOI with As segregation (at 700°C drive in) in PtSi. The developed process module was used in several batches of the JPP for PMOS and NMOSFETs.

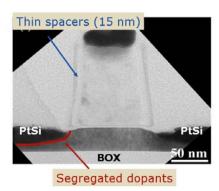



Fig. 2 XTEM of dopant segregated PtSi Schottky Barrier MOSFET on SOI. The thin spacer process was developed within the JPP.

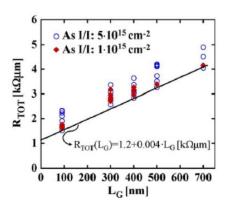



Fig. 3 The integrated low temperature process yields a  $R_{SD}$  of about 1 k $\Omega$ µm for NMOSFETs

## Processed batches within the Joint Processing Platform

Final Report

#### Batches with LaLuO3/TiN and DS SB contacts

In total 4 batches with LaLuO<sub>3</sub>/TiN gate stack were processed with the JPP of NANOSIL. Three of them had the DS SB contacts integrated and one of the used conventional implanted S/D with a gate last process. Batch 2 (bulk-Si) and batch 3 (SOI) was the first batches the used the LaLuO<sub>3</sub>TiN gate stack developed in FP1.3 and the DS SB contacts from FP1.2. Device processing was conducted at KTH and MBE deposition of LaLuO<sub>3</sub> and PVD of TIN was performed at Julich and AMO, respectively. The SiO<sub>2</sub> references showed almost 100 % yield and from the device characteristics it was estimated that  $R_{SD}$  was below 1 k $\Omega\mu m$ . The excellent uniformity achieved for both for NMOS and PMOSFETs on bulk-Si and on SOI wafers showed that the low temperature DS SB PtSi process can be used both on bulk-Si and SOI. Batch 2 and 3 also showed that gate leakage was drastically increased if LaLuO<sub>3</sub> was deposited directly on an HF last Si surface. With a 5 nm thick SiO<sub>2</sub> layer between LaLuO<sub>3</sub> and the Si channel the gate leakage was as low as for the SiO<sub>2</sub> references and the yield was almost 100%. Clearly a thin interlayer (to achieve low EOT) was needed between the LaLuO<sub>3</sub> and the Si channel. A chemical oxide was developed for this purpose and inserted in batch 4.

The aim of the batch 4 was to integrate the LaLuO<sub>3</sub> improved with a chemical oxide interlayer and DS SB contacts on 60 nm gate length sSOI. The starting material was 200 mm SOI and sSOI wafers from SOITEC. The wafers were resized to fit the standard wafer size within JPP. The BOX was 145 nm and silicon thickness (t<sub>Si</sub>) was 20 nm for SOI and 15 nm for sSOI. Fig. 4 shows a schematic cross-section of the device. The Si channel was fully depleted for both strained and unstrained devices. Table I depicts the experimental split between the devices.

Table I Split of wafers in batch 4

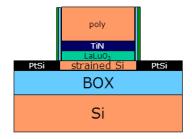
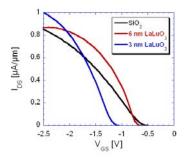




Fig. 4 Schematic ross-section of FD sSOI with DS SB contact and high-k/MG

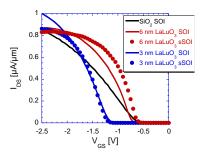
| Strain [GPa] | LaLuO₃ [nm] | SiO <sub>2</sub> [nm] |
|--------------|-------------|-----------------------|
| 1.4          | 3           |                       |
| 1.4          | 6           |                       |
| 1.4          |             | 4.4                   |
| 0            | 3           |                       |
| 0            | 6           |                       |
| 0            |             | 4.4                   |

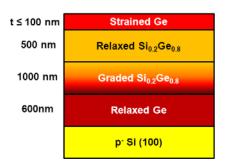
During the gate pattering the hard mask was unfortunately not cleared properly and this lead to poly-Si/TiN residues along the gate edge and partly non cleared gate material. In an effort to save the wafers an extended gate etch was performed that cleared the residues but it also degraded the integrity of the S/D areas and consequently to a non-uniform PtSi and dopant segregation process. Although working 60 nm devices were found the drain current scattered too much (due to non-uniform parasitic S/D resistance) for any reliable interpretation of the results. Instead characterization were extensively performed on long channel devices (L=10 μm). The reference (SiO<sub>2</sub>) SOI wafer had 80 % yield on PMOS and 70 % yield on NMOS. For wafers with LaLuO<sub>3</sub> acceptable uniformity and yield was achieved for PMOSFETs but NMOSFETs had virtually zero yield. Extensive characterization of the PMOSFET uniformity was conducted and here only the representative characteristic is presented. The insertion of a chemical oxide was successful and CET was 4.4, 2.8 and 2.0 nm for SiO<sub>2</sub>, 3 nm LaLuO<sub>3</sub> and 6 nm LaLuO<sub>3</sub>, respectively. Fig. 5 shows I<sub>dlin</sub> and LaLuO<sub>3</sub> devices exhibits a higher g<sub>m</sub> compared to the reference. A significant result was that the hole mobility was not degraded in LaLuO<sub>3</sub> devices (µ<sub>hole</sub>=62-68 cm<sup>2</sup>/Vs for both reference and LaLuO<sub>3</sub> devices). The higher g<sub>m</sub> and improved sub-threshold slope (see Fig. 6) of the LaLuO<sub>3</sub> devices are due to the reduced CET and nondegraded mobility. As expected PMOS devices were not affected by tensile biaxial strain in the Si channel (see Fig. 7). sSOI is expected to improve the NMOSFETs. Unfortunately (except for 70 % yield on the SiO<sub>2</sub> ref.) no working NMOSFETs was found on the wafers. All 100 NMOSFETs on all wafers have been measured. Previous work in FP1.3 had showed working long channel NMOSFETs on sSOI with a process that had a maximum temperature of 450 °C. Therefore a gate last process was developed and 4 wafers with LaLuO<sub>3</sub>/TiN were fabricated to study the effect of temperature on NMOSFETs. Unfortunately the first of these wafer showed a substantial gate leakage (both for PMOS and NMOS) and so far the JPP has not been able to reproduce the results from FP1.3.

Final Report



10° l<sub>DS</sub>, I<sub>G</sub> [μΑ/μm] 10<sup>-2</sup> 10° 10<sup>-4</sup> 10<sup>-6</sup> -1.5 -1 V<sub>GS</sub> [V] -2.5 -2 -0.5





Fig. 5 I<sub>D</sub>-V<sub>G</sub> characteristics of representative LaLuO3 devices on SOI.

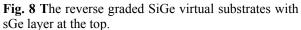

Fig. 6 LaLuO<sub>3</sub> devices exhibit an improved sub-threshold slope compared to SiO<sub>2</sub> ref. indicating low Dit.

Fig. 7 LaLuO3 PMOS devices are not degraded by the tensile biaxial strained Si channels (sSOI).

#### **Strained Ge channel PMOSFETs**

Strained Ge (sGe) is a promising material for enhancing performance of PMOSFETs and up to 4 times higher mobility compared to strained Si MOSFETs has been reported. Within the JPP epitaxial growth of high quality, compressively strained Ge layer heterostructures on a Si (100) substrate has been demonstrated by industrially compatible RP-CVD and a threading dislocation density of 2 x10<sup>6</sup> cm<sup>-2</sup> has been achieved. The maximum thickness of sGe layer that could be grown while maintaining full strain depended strongly on the growth temperature. For the sGe PMOSFT batch an optimized growth temperature of 400 °C and 20 nm thick sGe was used. Fig. 8 shows a schematic cross-section picture of the reverse graded SiGe virtual substrates and the sGe layer on top. The sGe layer was fully strained according to XRD and smooth surfaces were obtained with an rms surface roughness of just 2.2 nm. The JPPs MOSFET process was adopted to have a maximum temperature of 450 °C to ensure fully strained Ge after device processing (see Fig. 9). In order to control short channel effects and avoid ion implantation with associated anneals for damage repair the layers were in-situ doped during the growth. A total of 24 200 mm Ge wafers were grown for the JPP.





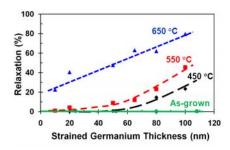
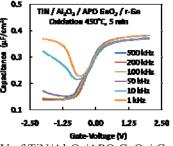
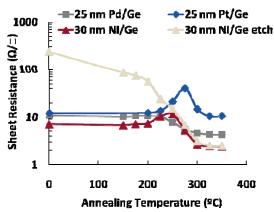




Fig. 9 train relaxation after  $10 \text{ min H}_2$  annealing at various temperatures. Relaxation was determined by XRD

To take full advantage of the increased hole mobility of sGe PMOSFET the issue of passivation of the Ge channel surface in direct contact to a high-k gate dielectric has to be addressed. To avoid the formation and volatilization of GeO a low temperature passivation method was developed in combination with the formation of a high-k dielectric gate stack. Different oxidation treatments were applied to form a thin GeO<sub>2</sub> passivation layer using either an ozone-based (O<sub>3</sub>) or and atmospheric pressure oxidation (APO) step. The oxidation temperatures applied were in a range from 400 to 450°C. Afterwards a high-k dielectric layer of Al<sub>2</sub>O<sub>3</sub> was deposited by ALD at 200°C followed by ALD TiN at 350°C. Fig. 10 shows the results of capacitance-voltage characteristics of the structured high-k metal gate capacitor stacks after dry etching. The layer structure consists of the relaxed Ge substrate described above, the thin APO GeO<sub>2</sub> interface passivation layer and the adjacent ALD Al<sub>2</sub>O<sub>3</sub> capped by ALD TiN. The findings of the different low temperature oxidation processes for the formation of the GeO<sub>2</sub> interface passivation layer are shown in Fig. 11. It was found that the atmospheric pressure oxidation is advantageous compared to the ozone oxidation treatment of the Ge surface, leading to low interface trap densities  $D_{it}$  near midgap of  $\sim 4.10^{11} \text{eV}^{-1} \text{cm}^{-2}$ , whereat the ozone treatment resulted in  $D_{it}$  of  $\sim 6.10^{11} \text{eV}^{-1} \text{cm}^{-2}$ . After the structuring of the TiN metal gate SiN spacers were formed and S/D region was opened be selective wet etch of Al<sub>2</sub>O<sub>3</sub>. In order to implement an implant free low temperature PMOSFET germanides were evaluated as metallic S/D. Germanides offer the required low formation temperature as well as a low sheet resistance.




**Fig. 10** CV of TiN/Al<sub>2</sub>O<sub>3</sub>/APO GeO<sub>2</sub>/rGe MOS gate stack. The formation of GeO<sub>2</sub> in O<sub>2</sub> atmosphere was applied at 450°C for 5 minutes.



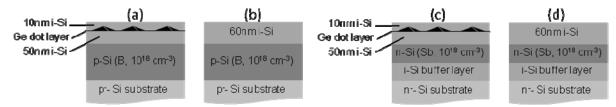
**Fig. 11** Interface trap density for O<sub>3</sub> or O<sub>2</sub> oxidation prior to the deposition of 10 nm ALD Al<sub>2</sub>O<sub>3</sub>..

The formation of S/D contacts was investigated in more detail to compare different promising material candidates of nickel-germanide (NiGe), platinum-germanide (PtGe) and palladium-germanide (PdGe). These germanides were formed during vacuum annealing with investigated formation temperatures ranging from 150 to 350°C. A low resistivity phase at formation temperatures at or below 300°C in case of NiGe and PdGe and at or below 325°C in case of PtGe is found. Fig. 12 shows the influence of the annealing temperature on the measured sheet resistance on either 25 nm Pt, 25 nm Pd or 30 nm Ni deposited on the relaxed Ge surface. Fig. 13 summarizes these results in more detail giving the formation temperature as well as the respective sheet resistance of the lowest resistivity phase observed. For the metal Ni experiments on the selective etch removal were successfully performed. In order to remove the unreacted Ni metal from the wafer surface layer a selective wet etch using diluted HCl was applied. Although all formed germanides additionally offer the required low contact resistance to the p-type channel, we find that NiGe is the most promising candidate to be

implemented into the S/D region of Ge p-MOSFET devices due to its readily available selective wet etch process.



|                | T <sub>Form</sub> (°C) | Sheet resistance (Ω/□) |
|----------------|------------------------|------------------------|
| PtGe           | ~ 325                  | 10.5 (25 nm)           |
| PdGe           | ~ 300                  | 4.2 (25 nm)            |
| NiGe           | ~ 300                  | 2.4 (30 nm)            |
| NiGe<br>etched | ~ 300                  | 2.5 (30 nm)            |


**Fig. 12** Sheet resistance ( $R_s$ ) of 25 nm Pd, Pt or 30 nm Ni deposited on Ge as function of vacuum annealing temperature. Additionally,  $R_s$  of NiGe after selective wet etching is also plotted.

**Fig. 13** Summary of experiments for the formation of source and drain regions used in the self-aligned process flow.

The results of the process optimization show that the demonstrated process scheme allows a suitable low temperature integration of the devices with relaxed rGe and sGe wafers, taking advantage of the low temperature processes applied. Furthermore, the highest process temperatures of 450°C applied in the process flow, will maintain the full strained Ge top layers in case of sGe. In the JPPs sGe PMOSFET batch there are 2 sGe wafers and 2 relaxed Ge wafers (5·10<sup>16</sup> or 10<sup>18</sup> cm<sup>-3</sup> channel doping) that have the developed APO/Al<sub>2</sub>O<sub>3</sub>/TiN gate stack and NiGe as source/drain contacts. At the time of writing this report contact hole formation and metallization is left to process before complete MOSFETs are available. The JPP will continue developing the sGe process using that material grown with NANOSIL.

#### **MOSFETs** with buried Ge stressors

In WP2 a technology to locally strain Si has been developed. Small range (5-20) nm strain fields are introduced in Si by embedding Ge islands in Si. This locally strain Si was used as starting material for NMOS and PMOSFET fabrication within the JPP. The aim was to study the influence of the small range strain fields and Ge dot quantization levels on mobility and threshold voltage in MOSFETs. MBE growth of reference and buried Ge dot layers (4 wafers, Fig. 14) for both n- and p-type MOSFET have been performed. The Ge dot layer as a stressor is placed 10 nm below the channel. The lateral size of the Ge dots was 15 nm so the mean value for the stress effect was measured at fabricated gate lengths. A low growth temperature of 350 °C was used to get pure Ge dots. B and Sb (10<sup>18</sup> cm<sup>-3</sup>) were used as dopant atoms for p-type and n-type doping, respectively.



**Fig. 14** Schematic representations of the layer structures for (a) n-MOS and (c) p-MOS with buried Ge stressors and for reference (b) n-MOS and (d) p-MOS devices. The doped layer below the channel is grown as step doped (10<sup>18</sup> cm<sup>-3</sup> at about 50 nm below the channel).

After a low temperature (400 °C) isolation scheme 4.2 nm SiO2 gate oxide was grown followed by CVD deposition of heavily doped poly silicon. The gate was patterned and oxide/nitride spacers were formed followed by S/D implantations (PMOS: Boron 2·1015 at 10 keV, NMOS: Phosphor: 2·1015 cm-2 at 30 keV). Activation of S/D implants was performed at 900 °C for 30 sec. Metallization consisted of 20 nm NiSi formed

at 450 °C, contact hole formation and TiN/Al deposition and patterning and FGA ended the processing. Processing started Nov. 2010 and finished Feb. 2011. Initial measurements show working PMOSFETs and NMOSFETs with Ge dots in the channel. The wafers are currently evaluated electrically by partners from WP2 and WP3.

#### Rsd of DS SB MOSFETs on sSOI

Flagship Project 1.2 devoted to DS SB contacts has investigated techniques to reduce the SBH between the metallic S/D and the channel of the MOSFET. Results on diodes have been achieved for different silicides, dopants, strained/unstrained Si and process temperatures. It has been shown that it is possible to achieve low SBH below 0.1 eV and that strain in Si aids in reducing the SBH further. However the real important parameter for devices is the excessive source/drain resistance (Rsd) associated with the S/D contacts. Because of the low resistivity of the silicide used as metallic S/D contacts Rsd is dominated by the effective SBH between the metal and the channel of the MOSFET. The aim of the last batch within JPP of NANOSIL is to measure Rsd in DS SB MOSFETs with short gate lengths of 60 nm. The short gate length device is needed in order to measure low Rsd. The batch was delayed because partners within NANOSIL had difficulties deciding whether the LaLuO3/TiN gate stack would be used or not. Initially the ambition was to be able to make 60 nm gate length devices with good electrostatic control with the LaLuO3/TiN EOT of 1 nm. Because of the uncertainty in the repeatability of the LaLuO3/TiN gate stack it was finally decided to use SiO2 (EOT=4.2 nm) with the main purpose to provide accurate Rsd measurements for FP 1.2. The batch was started in the last phase of the project and it is anticipated that electrical results will be available at the final NANOSIL review meeting in May.

• **WP4:** WP4 is organized in five tasks. The main results achieved in each task are reported below.

#### Task 4.1 (Benchmarking of modelling approaches and simulation tools)

Deliverable 4.1 defines the template devices for benchmarking simulation models and includes template MOSFETs (32 nm and 22 nm gate length Bulk and Double gate MOSFETs and nanowire MOSFETs). Several devices were defined in collaboration with the fabrication Partners of WP1 and WP2 to ease the goal of model validation, calibration and comparison with experiments.

A new method for the 1D deterministic solution of the Boltzmann transport equation has been conceived and tested: we first solve the coupled Schrödinger–Poisson equations to extract the profiles of the 1-D subbands along the channel; next, the coupled multisubband Boltzmann equations are tackled. The deterministic solution allows to obtain smooth carrier-distribution functions on a range of several orders of magnitude. Some peculiar features of the low-field mobility as a function of the wire diameter and gate bias have been discussed and justified based on the subband energy and wave-function behavior within the cylindrical geometry of the investigated nanowire.

New solution method for 1D quantum transport with full subband shape taken into account: the band-structure effects on the transport characteristics of ultrascaled silicon nanowire (SNW) FETs have been accounted for by means of a new approach for the solution of the open boundary Schrödinger equation in the SNW. The model has been validated by comparison with 3-D atomistic simulations based on the tight binding approach, and simulation results are compared with a simpler effective-mass model with either constant and fitted (not bulk-like) transport effective masses.

The simulation of advanced nanometre scale MOSFETs and the investigation of new device architectures is nowadays a very challenging task, because technology is exploring a large number of technology options not considered so far during the development of previous ITRS technology nodes.

For most of these options (SOI and UTB substrates, non-conventional crystal orientation of the channel material, high-k dielectric, metal gate, strain, etc....) no established models are available and actually it is not even clear what will be the most appropriate modelling approach to calculate device characteristics for such nanoMOSFETs.

In this framework, the device modelling community is challenged to provide predictive simulation capabilities to technology developers, in order to reduce the technology development effort and cost.

Such tools are required to address the typical issues of transport at the nanoscale: i) partially ballistic transport, which is very far from the realm of validity of the drift-diffusion model, ii) quantum confinement in the channel, which alters both electrostatics and scattering rates, and iii) source-to-drain tunneling, which affects not only subthreshold behaviour but also the on-state current.

Final Report

Different groups are pursuing different modelling approaches to cope with these difficulties (Conventional Drift Diffusion with Density Gradient Corrections, Quantum Drift Diffusion, NEGF, conventional Monte Carlo, Multi Subband Monte Carlo, Wigner function solvers, etc...) but no winning approach has been found yet. The degree of maturity of nanoMOSFET modelling is such that none of the available models is able to cover all the technology variants currently under investigation. It is therefore of extreme importance to be able to compare on a fair basis the different models in order to establish the relative importance of the different model approximations made.

Deliverable D4.3, compares the results obtained by a first category of simulation approaches (semi-classical) approaches including Quantum Drift Diffusion, conventional Monte Carlo, Multi Subband Monte Carlo in terms of low-field mobility and trans-characteristics Ids(Vgs) at low and high Vds; internal quantities as inversion charge and carrier velocity along the channel are presented as well. The structures adopted for such comparison are the template devices (that is, idealized transistor structures representative of the forthcoming technology nodes and suitable to be simulated with all available models) described in the Nanosil Deliverable D4.1. The simulated devices were five MOSFETs with gate length ranging from 32 nm down to 16 nm and two Silicon nanowire FETs.

The five different Monte Carlo (MC) device simulators gave very consistent results. The differences are mostly rather small for the SOI-FET with quantum effects having a minor effect on threshold voltage due to the lowly doped channel, while the two multi-subband MC simulators show some prominent deviations in the case of the DG-FET. High-k mobility degradation by remote phonon scattering (RPS) in free carrier

MC approximation leads to smaller performance degradation compared to multi-subband MC with remote Coulomb scattering (RCS) and RPS, but requires further investigations.

Results were presented at the at the 14<sup>th</sup> International Workshop on Computational Electronics (IWCE-14) Conference in 2010.

A more comprehensive set of tools, including full-quantum models, and more aggressive template devices, including those representative of the 16nm node, have been tested and compared during the third year of the project and the results presented in D4.6.

In order to be able to ascribe differences in electrical characteristics to differences in the adopted models or in implementation, we have first aligned the considered codes from the point of view of electrostatics simulation, by modeling devices at zero drain-to-source voltage, and ensuring excellent agreement in the charge and potential profiles obtained. After this necessary step, we have investigated both low-field and large-bias transport. Differences in simulation results obtained when using different models can be directly linked to differences in the transport model adopted. A few issues clearly emerged: First, source-to-drain tunneling is extremely important both for the 10 nm double-gate MOSFET and for the 6 nm nanowire FET, especially in evaluating the subthreshold behavior. Not considering tunneling and wave function penetration in the gap can result in the inability to recover the actual subthreshold behavior.

As a second point, all transport models consistently point out that scattering with phonons, impurities, and surface roughness, bring all considered devices far from fully ballistic transport. Even in the case of the FET with 6 nm channel length, the cutoff frequency of the intrinsic device (i.e., excluding parasitic capacitances) is cut by roughly a factor two when the main scattering mechanisms are considered, but still above the THz

Furthermore assumptions on the scattering mechanisms are apparently at least as important as the adopted transport model. Indeed, differences among results obtained with different transport models are limited from a qualitative point of view; by performing different calibrations, all transport models considered should be able to provide the same current-voltage characteristics.

A colaboration between IU.NET and KTH is devoted to the modeling of MOSFETs with metallic S/D. On one side, simple 1D models and drift-diffusion simulations are used to obtain a better understanding of the Shottky barrier lowering associated to dopant segregation. On the other side, Shottky barrier contacts have been implemented in a Multi-subband simulator, using a simple approach (based on the effective potential) to account for tunneling across the image force lowered Shottky barrier. In particular, in the framework of Task 4.1, the developed model has been used to compare the current drive of the 32nm nanosil template with devices featuring the same silicon film thickness, gate length and gate stack, but with metallic source and drain. It has been found that very low Shottky barrier heights (below approximately 50meV) are needed in order to obtain an On-current comparable to the one of a doped source/drain device. Otherwise, the current is strongly limited by electron injection at the metal/semiconductor interface. Results have been interpreted based on a the well-known Lundstrom model for quasi-ballistic transport. Results were presented at the ULIS 2010 conference.

Finally, for the first time device simulations of p-MOSFETs have been performed by solving the multisubband Boltzmann Transport Equation including the 2D carrier confinement with realistic scattering processes for the 6x6 k.p band structure, without band structure approximations. Theses simulations demonstrate that the simultaneous solution of kp-SE, PE and BTE is possible for realistic devices with TCAD like properties concerning convergence speed and numerical precision.

## TASK 2 (Gate leakage and generation-related off-currents)

The 3D full-band quantum-transport code GreenSolver was extended for the simulation of gate leakage currents in Si nanowire transistors. A real-space Schrödinger-Poisson solver has to be used instead of the popular mode-space. It was found that the leakage currents calculated with the 2D approach are significantly larger due to diffraction of the electron waves at both edges of the gate contact. This effect had never been explained and quantitatively treated before.

Deliverable 4.4 mainly deals with the evaluation of the gate leakage currents in the template devices which were defined within D 4.1, the refinement of the leakage conduction model and the study of the impact of the interface transition layer on the electronic structure of the substrate and the gate leakage current.

The devices investigated include bulk MOS transistors as well as single-and double-gate devices and a CNT FET, each equipped with high-K dielectrics. The drain and gate currents and a comparison between the different architectures is attempted, pointing out the difficulties in comparing different devices where the edge component of the leakage current plays a dominant role. Then, the leakage current in a 20×20 µm2 MOSFET with HfO2 dielectric is investigated in more detail, looking at the temperature dependence of experimental data provided by Tyndall University. It is shown that the overlap amount controls the leakage at low fields, while at high voltages the bias and temperature dependences cannot be reproduced. Simulations via existing trap-assisted tunnelling (TAT) models are carried out, suggesting that this could be the probable mechanism. Finally, the impact of the interface transition layer between silicon and the dielectric is investigated, assuming a gradual transition of the conduction band edge rather than an abrupt one. The effects on the carrier quantization at the interface are discussed, showing that the leakage current can increase by an order of magnitude as a consequence of the different penetration of the wave-functions

In collaboration with F1.3 (High-k Flagship) a detailed theoretical comparison of the gate leakage characteristics of bulk MOS capacitors (fabricated and characterized in F1.3) and FD SOI (data required by the ITRS Roadmap) have been carried out.

The comparison of the gate leakage of the two structures at 1.5 V is expected to give a factor of 1.5 as a "safety margin" by using bulk MOS-cap data in evaluating dielectrics for use in DG SOI devices.

# TASK 3 (Understanding of mobility and interface effects in presence of strain and high-k dielectrics)

The experimental characterization of mobility for different architectures of high-K based transistors and, on the other hand, an extensive simulation activity which includes a systematic comparison to experiments either performed inside the NANOSIL project or retrieved from the recent literature, have been carried out and the results presented in D4.2.

Several groups have been involved in an effort to gain thorough understanding of the low-field mobility in biaxially-strained n-MOS and p-MOS transistors. The activities started with a careful selection of experimental data, including both data provided by partners of the NANOSIL consortium and data retrieved in the literature. The comparison between the different simulation results and with the experiments are discussed in detail in the deliverable D1.3.

Further efforts have been devoted to the modelling and the understanding of strain effects on the mobility of planar as well as FinFETs. In particular the effect of the biaxial strain on the Coulomb limited mobility was investigated and a comprehensive study was developed about the potentials for strain induced mobility enhancements in FinFETs.

An analytical electron and hole mobility models has been developed for ultra-thin body FETs on different crystallographic orientations for simulation of SOI-FETs, FinFETs and Silicon Nanowires; furthermore, it has been implemented through the Physical Model Interface (PMI) in the commercial simulator Sentaurus by Synopsys.

Very recently the mobility and the ION of Ge MOSFETs were compared to Si MOSFETs (an activity very synergetic with FSP1.1) by using state-of-the-art multisubband Monte Carlo (MSMC) simulations, that account for the quantization in the inversion layer, for a wide set of scattering mechanisms and for the non-local transport in nanoscale MOSFETs. The simulation results have shown that strained Ge n-MOSFETs have great potentials for beating the Si counterparts, however the engineering of the series resistance is a crucial issue. The already developed low-field electron and hole mobility models for (100), (110) and (111) UTB MOSFETs have been applied to FinFETs by accounting for different surface orientations, for extremely small silicon thicknesses as well as for the strain. A nice agreement with experiments available in the literature has been obtained for different stress configurations.

# TASK 4 (Compact modelling)

The compact modelling activity in NANOSIL is concentrated on three main issues: i) Electrostatics, ii) Partially ballistic transport and iii) Variability.

The introduction of ultra-thin-body and multi-gate structures for nanoscale FETs with the aim of improving the electrostatic control of the channel by the gate poses significant challenges to the definition of accurate analytical models. This topic has been particularly addressed by groups in URVUGR and UCL. Here, a series of compact models for several types of Multi-Gate MOSFETs are presented (double-gate, tri-gate, gate-allaround, ultra-thin body). All models are based on a unified charge control model derived from the solution of the 1D Poisson's equation in the direction perpendicular to the channel. Short-channel electrostatic effects are incorporated using equations derived from the remaining 2D or 3D equation. All models are favourably compared with a series of TCAD simulations and experiments. UCL has also investigated the impact of the substrate bias and space-charge conditions at substrate-buried oxide interface on the behavior of UTB and UTB2 (i.e. ultra-thin-body with thin BOX) SOI MOSFETs by both electrical measurements and 2D Atlas Simulations. The inclusion of partially ballistic transport in compact models of nanoscale MOSFETs is now a necessity, given the extremely small channel lengths of CMOS technology. Existing models, such as the backscattering models are very intriguing from the conceptual point of view but too simplistic. This issue has been tackled by groups in INPG-IMEP and IUNET. They propose here improvements to the Lundstrom Backscattering model, and an alternative macromodel capable to seamlessly cover ballistic and drift-diffusion transport in two- and one-dimensional FETs, also in the presence of Schottky-barrier contacts.

How to address FET variability with compact and analytical models has been the subject of investigation for GU and IUNET. In particular, GU proposes and evaluates different statistical compact model generation strategy on the basis of the accuracy of statistical circuit simulation. IUNET proposes a methodology to extract information on the variability of device electrical parameters based on a limited number of TCAD simulations and on dedicated analytical models.

As a final remark, results from this activity led to the publication of 21 papers in peer-reviewed journals and 12 papers in proceedings of international conferences.

### TASK 5 (RF and ultra fast I-V characterization and modeling)

A detailed DC and LF noise characterization of FinFETs has been carried out. Parameter extraction conducted at room and low temperature clearly indicates that the mobility is degraded at small gate length in sub 100nm FinFETs, as was already found for GAA, FD-SOI and DG-MOS devices. By proper extraction technique,

sidewall and top conductions are analysed, showing that sidewall mobility is about 25-30% degraded as compared to the top surface conduction, likely resulting from Fin patterning-induced defects and/or crystal orientation difference. Trap density in high-k/metal gate stack is found much larger than in pure SiO2 MOSFETs but with no further degradation at small Fin widths.

RF measurements were performed at UCL on three types of devices coming from UNEW: 1) strained Si HBT, for which high performance at DC was demonstrated (IEDM 2008); 2) Si BJT and 3) SiGe HBT. These transistors had been fabricated in parallel, so direct comparison between them is relevant. Extractions of fT and fmax were made on all types of transistors and for different layout options. • In collaboration with UNEW, the self-heating effects in Si, SiGe and strained Si HBTs have been investigated. Based on RF measurements of the transconductance, it appears that the impact of self-heating is much more pronounced for strained Si HBTs.

Fully-depleted (FD) Schottky barrier (SB) MOSFETs with dopant-segregated NiSi source/drain junctions built by FZJ have been characterized over a wide frequency band at UCL. SB-MOSFETs with a channel length of 80 nm show high on-currents of 900  $\mu$ A/ $\mu$ m for n-type devices with As segregation and 427  $\mu$ A/ $\mu$ m for p-type devices with B segregation. A detailed RF characterization proves the high performance of the devices with cut-off frequencies fT of 117 GHz for n-type and 63 GHz for p-type SB-MOSFETs and clearly elucidates the effects of extrinsic and intrinsic device parameters as a function of gate length. Results have been presented at ESSDERC 2009.

More recently, researchers of FZJ and UCL have investigated the DC, RF and linearity performance of new optimized FD SB-MOSFETs on thin-body SOI. N-type NiSi source/drain SB-MOSFETs with a channel length of 80 nm using silicidation induced dopant segregation at 450°C show on-currents as high as 1152 μA/μm and exhibit a cut-off frequency of 140 GHz. This is the highest fT achieved for n-type SB-MOSFETs so far. On-wafer S-parameter measurements facilitate the extraction of the device parameters as a function of the implanted ion dose.

Very recently UNEW investigated the origins of high-field mobility enhancements in uniaxially strained Si by high resolution AFM measurements on strained Si beams with varying degrees of uniaxial strain. Rms roughness reduces from 0.29 nm to 0.07 nm as uniaxial strain increases from 0 to 2.77% and is accompanied by an increase in roughness correlation length compared with bulk Si (up to ~1.5% strain) before reducing at higher levels of strain. The results indicate that accurately determined correlation lengths should be considered in transport modelling of strained Si.

# 4.1.4 The potential impact (including the socio-economic impact and the wider societal implications of the project so far) and the main dissemination activities and exploitation of results.

**Introduction:** The shrinking dimensions of electronic components will continue in the next two decades. The critical feature size of the elementary devices (technology node) will drop from 65nm in 2007 to 8nm in 2025. In the sub-10nm range, "Beyond-CMOS" devices will certainly play an important role and could be integrated on CMOS platforms in order to pursue integration down to nm structures. Si will remain the main semiconductor material in a foreseeable future, but the needed performance improvements for the end of the roadmap will lead to a substantial enlargement of the number of materials, technologies and device architectures. Therefore, new generations of Nanoelectronic ICs present increasingly formidable multidisciplinary challenges at the most fundamental level (novel materials, new physical phenomena, ultimate technological processes, innovative device architectures, etc.) resulting in an urgent need of academic research, in order to explore new concepts and to understand the underlying physical mechanisms for N+4 technology nodes and beyond, which was the focus of the Nanosil NoE. This long term research activity will allow to speed up technological innovation and to prepare the path for future industrial applications in the field of communications, computing, consumer electronics, health, environment, etc.

In Nanosil, joint processing, characterization and modelling platforms, detailed on the Nanosil web site, were developed and used for the realization of ambitious flagship projects. A strong link has been established between modelling/simulation, processing and characterization activities within each project. In addition, visionary projects have also been defined in the More Moore and Beyond-CMOS domains. These projects focused on discussion Forums, brainstorming activities and Workshops and have generated new ideas and helped identifying the most promising topics for future information and communication technology.

A robust organisational, management and governance structure as well as decision-making mechanisms, based on a Governing Board, an Executive and Scientific Committee and WP Committees, have been realized in order to maximize the efficiency of the NoE. During Nanosil, close links with other European Projects (STREP GRAND, EUROSOI+ Thematic Network, STREP DUALOGIC, STREP NEMSIC, Compact Modelling Network COMON, STREP SQWIRE, STREP STEEPER, NoE NANOFUNCTION, etc.), the ENIAC Nanoelectronic Technology Platform (participation in the management team of the Scientific Community Council and several Working Groups devoted to research domains and infrastructures), the AENEAS organization (in charge of the ENIAC JU) and National projects in the same fields have been established in order to enhance the overall efficiency of the European Research in Nanoelectronics. NANOSIL acted as a cluster of projects, existing at the beginning or new ones, providing they were sufficiently forward-looking.

The interaction between the Scientific Community and the European Industry has also been strenghened (participation of representatives of the European industry in the Executive and Scientific Committee, industrial monitors for Flagship Projects, joint PhDs and Workshops, joint publications in high level Conference and Journals, etc.). Some STREPs including many industrial partners were also proposed by Nanosil Partners during ICT call 5 in October 2009 and have been launched in 2010 (SQUIRE, STEEPER).

Many Nanosil Partners and Sinano Institute Members have contributed to the "Sinano Institute vision", driven by the European Academic Community, in order to determine the most promising research topics in the More Moore, More than Moore and Beyond CMOS Nanoelectronic domains to be included in future FP7 Workprogrammes (document available on the Nanosil and Sinano Institute web sites - www.nanosil-noe.eu; www.sinano.eu). Sinano and Nanosil Partners are also in charge to establish in 2011 an updated version of the ENIAC SRA concerning the Beyond-CMOS field.

During the project, we have studied some of the main scientific and technical challenges put forward by the International ITRS Roadmap and European ENIAC Strategic Research Agenda for the understanding of the limitations and the proposal of advanced solutions in the More Moore area: main boosters for the driving current and best solutions for reducing the offstate leakage current (screening of the most promising high k/metal gate stacks, development of low source/drain Schottky barrier MOSFETs, study of novel strain platforms). We have also developed the knowledge for future industrial roadmaps beyond the CMOS technology and proposed very innovative Si-based nanodevices: realization of nanowires by top-down and bottom-up approaches, investigation of advanced small slope switches (focus on the most promising approach: Tunnel FETs) and carbon electronic structures.

The scientific results obtained in the joint Nanosil projects, showing significant improvements over the state-of-the-art, and the integration and spreading of excellence activities organized by Nanosil Partners, are summarized below for all the Work Packages.

All these activities will contribute to the *durable integration of the partners*. However, some very important specific actions have been launched for the strengthening of this durable integration:

- → Two new Partners (Tyndall-Cork, Uppsala University) became Members of the Sinano Institute in 2009, which is a legal entity (Scientific Association) created in January 2008 for the coordination of the European Academic Community working in the field of Nanoelectronics (launched for the durable integration of the FP6 Sinano NoE).
  - Five other European Institutions became Members of the Sinano Institute in 2011, in line with the new FP7 NoE Nanofunction launched at the end of the Nanosil NoE (ICN-Barcelona, VTT-Helsinki, Twente University, IES-Montpellier University, IMS Demokritos-Athens)
- → The Joint Processing, Joint Characterization and Modelling Platforms, which have been developed and used in the framework of the Nanosil NoE for our joint research activities, are now integrated as open Research Infrastructures in the Sinano Institute and can be used by the European Academic Community, SMEs and Industry

- → Nanosil Partners and Sinano Institute Members have been strongly associated to the new initiative launched in 2010 by STMicroelectronics called ENI2 (European Nanoelectronics Infrastructure for Innovation). This Infrastructure propose to coordinate the three levels of R&D activities needed in the nanoelectronics domain. The 1<sup>st</sup> level is coordinated by the Academic Community (the main contact is the Sinano Institute, it will ensure the coordination of this level) for long term researches (basic understanding, test and validation of innovative materials, processes and architectures in order to identify the most promising topics for future ICT). The 2<sup>nd</sup> level is coordinated by the Integration Centres (large European pre-industrial Institutes) for technology implementation and performance assessment of the most promising topics defined at level 1 on R&D equipments, and development of high performance logic, memories and derivatives (medium term). The 3<sup>rd</sup> level is coordinated by the European industrial companies for technology exploitation as functional products, process optimisation, yield, product reliability, device and interconnect architecture and design (short term).
- → A significant part of Nanosil Partners have launched a new FP7 NoE, Nanofunction, devoted to Beyond-CMOS nanodevices for adding functionalities to CMOS in the More than Moore domain (nanosensing, energy harvesting, nanocooling, RF). An important part of Nanosil results, especially those devoted to Nanowires mainly developed in Nanosil for ultimate CMOS applications, will be used in Nanofunction for the development of advanced nanodevices to be used in future nanosystems. On the other hand, many Nanosil Partners have been involved in the FET Flagship "Guardian Angels" proposal dedicated to future autonomous ultra low power systems for health and environmental monitoring. It has been selected as a pilot project (beginning in May 2011).
- **WP1:** The impact of this NOE is primarily through the beneficial collaborations that have been established/ consolidated during this NOE period. This is especially so where device fabrication is involved. Many of the interactions will doubtless continue beyond Nanosil. This in turn helps maintain the processing, characterisation and simulation platforms that were created originally in the Sinano NoE. Nanosil also helps/helped at least some of the partners to secure additional funding at the national level for complimentary research activity. The European infrastructure (both industrial and academic sectors) will have benefitted from this work.

The main dissemination has been through publication in international journals (many of high impact), through presentation at national and international meetings including some at the prestigious IEDM, VLSI and SSDM and through visits to leading laboratories around the world. In total there have been well over 100 publications arising from WP1, of which 40 are joint, and over 100 conference presentations (see WP5 report for details). Most of the work carried out in WP1 was world leading and in all cases, state-of-the-art. The ultimate exploitation will likely come primarily through continuing interactions with our pre- industrial institutes IMEC and LETI who have the critical links to the major semiconductor processing houses. Patented protection was undertaken by a few partners and this would be used to appropriate returns between the collaborating institutions.

• **WP2:** The primarily impact of WP2 within Nanosil is to explore the horizon beyond CMOS through the establishment of a lot of collaborations between the NoE partners. This includes especially the development of creative emerging technologies, characterization and simulation platforms for fabrication for alternative silicon-based post nanoelectronic devices. Embedded within the other work packages of Nanosil, WP2 activities cover a wide spectrum ranging from new fabrication methods and novel switching memory concepts to new functionalities and architectures. Furthermore the NoE helped to ensure additional funding for some partners at the EC level, for example the STEEPER project with four Nanosil partners and three industrial partners. In addition complimentary research activities were funded at the national level. Finally the European infrastructure (both industrial and academic sectors) will have benefitted from this work.

The main dissemination has been through publication in international journals (many of high impact), through presentation at national and international meetings documented in detail in the WP5 report. In addition through WP2 forums (especially workshops) between European Research Institutions on innovative visionary "Beyond CMOS" ideas were provided, for example on "Brain-Inspired Electronic Systems (BIECS)", on "Convergence of Electronics and Photonics" and on "Beyond CMOS Routes".

In general the focused research attempts within the network have provided substantial insight in both the confidence of individual groups as well as the ability to collaborate. A large body of "beyond CMOS knowledge" has been accumulated among leading groups in Europe, providing an excellent platform for future projects as well as a decisive orientation for future industrial roadmaps beyond CMOS.

Final Report

**WP3:** The work within the Joint Processing Platform has created direct scientific results as manifested in joint publications already published by partners. It is also anticipated that the work contacted during the last year of NANOSIL will produce several joint publications. The Joint Processing Platform has also had a major impact on the European academic research within nano-scaled MOSFETs because of the highly collaborative nature of the work. Several joint processing activities have been initiated and will continue e.g. in the area of sGe MOSFETs and high-k/metal gate dielectrics. These activities are also believed to create joint characterization and modeling activities in the future involving partners from the Joint Characterization and Modeling platform of NANOSIL. It is thus envisioned that the work initiated within the Joint Processing Platform will impact academic partners for several years beyond the end of NANOSIL. Furthermore the work has clarified the competence and skills between different partners possibly allowing for more effective research in the future if the collaborative spirit of NANOSIL can be continued. The collaborative work has also in some cases made partners differentiate and focus on their core competence and relied on collaboration to achieve research goals. One direct outcome of the WP3 is the new NoE Nanofunction which also will be similarly executed.

After the end of NANOSIL it is the ambition to incorporate the Joint Processing Platform into the SiNANO Institute enabling an open processing platform available to academic researcher in the EU. During NANOSIL WP3 has gathered and compiled information about the available resources within the processing platform. The information about the resources is accessible through the NANOSIL webpage. Furthermore, on the webpage an online request form has been set up where researcher can specify their processing needs. By filling in the request form they can send their requests directly to the coordinators of the Joint Processing Platform. It is believed that these activities will aid in that ambition to create an open processing platform to researcher with the EU community.

**WP4:** The European semiconductor research community has a long-standing tradition in the development tools for electron device simulation, both in Academia and Industry. Over the years, several research groups have tackled the issue of modeling nanoscale transistors adopting different approaches and transport models.

One of the major objectives of the modelling and simulation activity in NANOSIL has been to compare and benchmark such simulation tools and transport models by comparing the results they provide when applied on a small set of representative template devices. We believe this is an important objective provided by the NANOSIL Network of Excellence, since such a systematic comparison can be a useful guide to a young researcher entering the field, and can represent in an objective way the relative merits of different tools to a large group potential users, both in Industry and in Academia. In this way it can certainly increase the potential impact of device simulation research outside the small community of developers of modeling tools. The first large scale attempt to compare device models worldwide was carried out in 1993 by many groups involved in the development of Monte Carlo simulation techniques for the solution of the Boltzmann Transport Equation (BTE) [1]. At that time, Monte Carlo was seen as a reference technique, compared to simpler Energy Balance or Hydrodynamic transport models based on the momenta of the BTE, to solve in an exact way the BTE in short devices. The need for model benchmarking was reaffirmed within the European project SINANO. The SINANO workprogramme included benchmarking activities for both quantization and transport models. Thanks to a significant coordination effort it was possible to compare, analyze and debug seven Schroedinger-Poisson solvers and gate current models worldwide, until the results converged to a high degree of accuracy; residual discrepancies could be attributed to specific differences in the modelling approaches [2]. Monte Carlo Transport Models were also taken compared within SINANO, but the limited time and resources available made it impossible to reach definitive conclusions w.r.t. the accuracy and maturity of the models themselves. The success of this activity pushed the participants to the project to propose a similar, but broader scale activity, within the NANOSIL project and the main results of the comparison of a comprehensive set of tools, including semi-classical and full-quantum models, and more aggressive template devices, including those representative of the 16nm node, have been tested and compared during the project and the results presented in [3] and D4.6 (a full publication is in progress).

Furthermore, a formidable vehicle of dissemination of the modelling results has been the well known SINANO Modeling School, held in 2008 and 2010 in University of Bologna Summer Campus of Bertinoro, where almost 100 among students and teachers from all over the scientific world had the unique opportunity of staying together and share knowledge and experience, giving often rise to new collaboration opportunities within and outside the NANOSIL Consortium.

Finally it is worth mentioning that within WP4 several exchanges occurred outside the Nanosil which involved new partners particularly from Eastern Europe coutries.

- [1] A. Abramo et al., IEEE TED 1994.
- [2] P. Palestri et al. IEEE TED 2007.
- [3] F. Bufler et al, 14th IWCE 2010.

#### **WP5**:

# 1. Integration

#### 1.1. Coordination by WPs (FPs) leaders

Integration within Nanosil is carried out by WPs and FPs leaders through the coordinated programming of the partners' activities. 4 Work Packages (WPs) are defined within Nanosil. WP1 and WP2 are then subdivided to 3 and 4 Flagship projects (FPs), respectively. Additionally, these WPs are completed by Visionary projects (VP) in order to reinforce/stimulate the exchange of new ideas / provoke the discussions / exchange of opinions between partners.

Integration within Nanosil is measured through numbers of joint processing (JP), characterization (JC) and modeling (JM) activities within each FPs/WPs as well as cross-FPs/ WPs activities. Firstly, good tendency with constant from year to year increasing number of joint activities (~20-25%/year) was observed over the project. Starting from 38 in 2008 (24 JP, 11 JC and 3 JM, respectively), it becomes 47 in 2009 (26, 15 and 9, respectively), and finally reaches 58 in 2010-11 (27, 21 and 11, respectively). Secondly, number of cross-FP/WP activities increases as well from 13 in 2008 to 18 in 2009 and 2010-11. Thirdly, JP was very active over the whole project duration with more than 300 wafers processed. Integration of different WPs was observed particularly in JP during 2010-11. Fourthly, clear increase in JC in 2009 and especially in 2010-11 was observed as a result of very active processing during previous years.

Another integration measure is number of meetings between partners, organized in order to stimulate the joint activities, follow up the progress within WPs (FPs), discuss the obtained results and assure a smooth transfer/integration between different WPs. Similarly to joint activities, number of "technical meetings" between partners increased from year to year during the project: from 18 in 2008 to 32 in 2009 and finally 41 in 2010-11, proving intensification of collaboration between partners during the project. Number of cross-WP meetings increases strongly in 2010-11, being only 2 in 2008 and 2009, it becomes 10 in 2010-11. It was expected since 2010-11 was particularly devoted to process transfer/integration between WPs.

### 1.2. Common PhD students

NoE integration is reinforced by the common/joint PhD students between different partners.

About 10 common PhD students worked within Nanosil during each year of project (12 in 2008 and 10 in 2009 and 2010-11). Some of them already presented their PhD Thesis. It is interesting to note that most of them are related to the characterization activities (WP4). Some PhD works devoted to two WPs (1, 2 and 4) in the same time, thus reinforcing cooperation not only between partners, but between processing- and characterization/simulation- related WPs as well. Furthermore, majority of these PhD students being joint between industrial and academic partners enhances industry-academia interactions.

1.3. "Who is Who guide" of Nanosil partners was created in 2008 and made available through the Nanosil website Public Area. Interactive information is introduced in the "partners list". Moreover, the search by "competence" is available. Complete pdf-file is available on the site as well (http://www.nanosilnoe.eu/data/document/nanosil who is who.pdf). It is updated yearly. Furthermore, "Who is Who" of associated partners was initiated in 2009. Request for Beyond Nanosil institutions to be included in "Who is Who" of associated partners was made available on the web-site in public area. "Who is Who" of associated partners gathers "who is who" of institutions participated in exchanges with Nanosil partners as well as institutions involved in national projects or other collaborative actions (those interested). Updated 2010 version is available on the web-site (<a href="http://www.nanosil-noe.eu/data/document/">http://www.nanosil-noe.eu/data/document/</a> who-who-beyond-nanosil.pdf).

Additionally, we encouraged partners to provide us information about "<u>technical problems</u> they encounter <u>and open questions</u> they imagine" (requests were sent twice per year). Some problems/ questions were reported in 2008. Then, this information was discussed during E&S Committee meetings as well as put on the Nanosil website for the access of all Nanosil partners. No problem/ question inputs from partners were received during 2009-2010, assuming that these issues were discussed/solved on the level of FP/WP teams and were not worth to be discussed at ESC meetings.

1.4. Interaction with industrial partners aims at roadmapping, assessing the results and assures theirs transferability to industry. With this regards, each FP of Nanosil has industrial contact person or "monitor". Industrial partners are invited to participate in Executive & Scientific Committee Meetings to develop a general strategy of network progressing/ developing. Additionally, common industry/academia **PhD students** (6 in 2008, 7 in 2009 and in 2010-11) stimulate collaboration and free discussions between industrial and academic partners. Furthermore, projects involved both academia and industry, number of which, moreover, increases from year to year (~ 15 submitted/accepted in 2008, 11 running and 8 newly submitted/accepted in 2009 and 19 running and 14 newly submitted/accepted in 2010-11) reinforce exchange of knowledge with industrial partners within and beyond Nanosil. Finally, information about scholarships/trainings/PhD positions/etc. available at industry with web-links is accessible through the Nanosil (http://www.nanosilsite noe.eu/nanosil/wp5/scholarships-and-trainin.html).

### 2. Collaboration with other European and national projects

Screening of **national projects** of relevance has been performed by the participants from each country in 2008. In total 61 national projects were mentioned in a complete list available on the Nanosil web-site. The repartition between countries was as follows: 17 in UK, 4 in Ireland, 1 in Switzerland, 8 in Spain, 7 in Germany, 16 in France, 1 in Sweden, 3 in Belgium, 1 in Greece and 3 in Poland. E&S Committee members have selected 11 among them to participate in a common **Workshop Nanosil/National projects** which was held on January 30<sup>th</sup> 2009 in Grenoble. The idea of this workshop was to familiarize Nanosil partners with ongoing activities within each country, put those interested in contact and hence initiate new possible collaborations.

Furthermore, information on the on-going European and national projects as well as about newly submitted/accepted ones was requested to be updated by partners at the end of each year. **Lists of European and National projects** of relevance are **placed on the Nanosil web-site** (with update once a year), web-links to the corresponded project sites are introduced whenever possible.

Number of on-going European and national projects with participation of Nanosil partners was reported every year. Naturally, **good links between Nanosil and these projects** were established. As example we can talk about collaboration and exchange of knowledge between Nanosil and **FP6** (Pullnano, Metamos) and **FP7** (EuroSOI+, ANNA, COMON, GRAND, MODERN, STEEPER, SQWIRE, Nanofunction, etc. ...) **projects**. Additionally, number of the **newly submitted/accepted European**, **international and national projects** launched by (or with participation of) Nanosil partners increases from year to year: being **13** in **2008**, it becomes **25** in **2009** and in **2010-11**.

Finally, it is worth to point out high (and increasing) number of the projects submitted in the collaboration between two (or more) Nanosil partners (7 in 2008, 15 in 2009 and 14 in 2010-11), which evidence strong and durable integration/collaboration between Nanosil partners.

#### 3. Exchanges

**Exchange** of personnel within the project serves for further strengthening the exchange of expertise/knowledge/competence and complementarity between partners. Calls for exchanges were issued electronically every 3 months. In order to get access to the specific knowledge missing inside Nanosil, **Exchanges with Beyond Nanosil** partners (not only within, but also outside of Europe) were launched during 2009. This option included possibility to welcome selected researchers outside Nanosil and to stay/train of

Nanosil researches in the selected labs beyond Nanosil. Requests for such exchanges could be submitted by Nanosil partners only.

Requests from partners have been then **discussed during E&SC meetings and** those worth of support have been **selected**. Last call was issued in September. However, in view of project extension, partners were allowed to perform their planned exchanges until end of February 2011.

67 exchanges with total duration of 238 weeks (including 10 exchanges of total 60 weeks with Beyond Nanosil partners) were selected for support during 3 years of project. The number of requests clearly increased from year to year, thus indicating enhancement of network activity.

59 exchanges (including 9 with Beyond Nanosil) with total duration of 227 weeks (including 48 with Beyond Nanosil) were done during the whole project. We observe increase from year to year both in number and duration of exchanges, especially impressive during 2<sup>nd</sup> period: being only 7 exchanges with total duration of 12 weeks in 2008, it becomes 23 exchanges of 104 weeks in 2009 and 29 exchanges of 111 weeks in 2010-11. If we would look on the repartition between different WPs, it is interesting to point out that about half of these exchanges were devoted to characterization/modeling activity, i.e. WP4. Then, most of Beyond Nanosil exchanges were focused on WP4. It would be worth to emphasize increasing number of cross-WP exchanges (i.e. devoted to couple WPs in the same time): 7 (with total duration of 49 weeks) in 2009 and 15 (with total duration of 60 weeks) in 2010-11. Such exchanges serve not only as exchange of knowledge/expertise, but in the same time intensifies cooperation between WPs (particularly processing vs. simulations/modeling).

# 4. Spreading of excellence

## 4.1. Support of International Schools/Workshops

As for the exchanges, **calls** for the **conference/workshops/seminars support** were issued electronically **every 3 months**. The requests for such actions were gathered and the best ones were selected by E&S Committee. During 2008-2009 we were able to support mainly events explicitly mentioned in DoW. However, thanks to careful use of funds within WP5 as well as economy from certain exchanges, we were able to support higher number of workshops/ schools/etc. during last period: **14 in 2010-11 comparing to 5 per year during 2008-2009**. Following workshops were selected by E&S Committee for support over the whole project:

- MIGAS'08, France (10kEuro);
- SINANO-NANOSIL Workshop 2008, UK (5kEuro);
- 3<sup>rd</sup> SINANO International Summer School 2008, Italy (12kEuro);
- Postgraduate student meeting on electronic engineering, Spain (2.5kEuro);
- ULIS 2009, Germany (10kEuro);
- MIGAS'09, Fance (10kEuro);
- SINANO-NANOSIL Workshop 2009, Greece (5kEuro);
- Workshop "Convergence of Electronics and Photonics", Germany (5kEuro);
- D&Y Symposium: Advanced Devices and Technologies for ULSI Era, Poland (2.5kEuro);
- Postgraduate student meeting on electronic engineering, Spain (2.5kEuro);
- ULIS 2010, UK (10kEuro);
- Silicon Nanowires Workshop, Belgium (750Euro);
- International SiGe Technology and device meeting, Sweden (2.5kEuro);
- International Workshop on Sem-OI materials, sensors and devices, Belgium-Ukraine (11kEuro);
- SINANO Summer School, Italy, 2010 (14kEuro);
- Simulation and characterization of statistical CMOS variability and reliability, Italy (2.5kEuro);
- Graduate student meeting on electronic engineering JOINTLY with training course on Compact modelling, Spain (3.5kEuro);
- MIGAS 2010, France (10kEuro);
- Workshop on Carbon Electronics "EuroCarbon Symposium", Germany (2.5kEuro);
- SINANO-NANOSIL workshop 2009, Spain (5kEuro);
- Workshop "Nanoelectronics: a tool to face the future", Spain (2.25kEuro);
- Final Nanosil Workshop devoted to ENI2 "Nanoscale FET", Ireland (4kEuro);
- International conference "Micro&Nano", Greece (2kEuro).

### 4.2. Organization of seminars/courses/workshops/tutorials

Number of scientific events as workshops, conferences, schools, trainings, etc was organized by Nanosil in different countries over whole Europe during 3 years of project either with or without direct financial support from Nanosil.

First of all, common **SINANO-NANOSIL Workshops** aimed establishing a discussion forum in the field of nanoelectronics devices were organized every year as satellite events of ESSDERC/ESSIRC Conferences in order to ease attendance not only for Nanosil partners but to wide range of researchers/engineers/PhD students/etc. Lectures were given by Nanosil partners and by representatives from industry. Two first workshops were devoted to "Si-based Nanodevices for ultimate CMOS and beyond-CMOS" and the last one (jointly with VP1.4) discussed the topic "On the convergence between More Moore, More than Moore and beyond CMOS". Traditionally, these workshops were open to a general public and free of charge.

Secondly, special attention is worth paying to high number of events targeting particularly **young researchers** as graduate and post-graduate students pursuing their PhD. We can refer to two Sinano Sumer schools, three MIGAS, yearly postgraduate student workshops in Spain, etc.

Thirdly, it would be worth to emphasize that couple of above mentioned workshops financially supported by Nanosil were organized in **Warsaw**, **Poland** and in **Kiev**, **Ukraine** (the last one **jointly with beyond-Nanosil** partner) thus allowing wider dissemination of Nanosil knowledge and intensification of **collaboration with East Europe and former Soviet Union countries**.

Fourthly, as was already mentioned above, **two Visionary projects** (VP 1.4 "More Moore Forum" and VP 2.5 "Beyond CMOS vision") were launched within Nanosil WP1 and WP2 in order to stimulate discussions on the new hot-topics and identify areas where the partners of the Network can make a contribution. The **discussions/workshops organized by these VPs** are open to participants within Nanosil free of charge as well as to wide audience beyond Nanosil. **Ten workshops and panel sessions** were organized **within VP1.4** during 2008-2010 and addressed the four topics related to particular aspects of Ultimate CMOS: electrostatic effects; transport, fluctuations and alternative channel & substrate materials. **Four workshops** were organized **within VP2.5 during 2008-2011 and addressed innovative Beyond CMOS ideas**. Such topics were discussed: "Brain-inspired Electronic Systems", "Convergence of electronics and photonics" and "Beyond CMOS Routes".

Fifthly, additionally to the abovementioned workshops financially supported by Nanosil (either through WP5 funds or VPs funds), it is worth to mention increasing from year to year number of scientific events organized by Nanosil partners without direct funding from Nanosil and open to wide public (6 in 2008; 9 in 2009 and 14 in 2010-11). Among them it is worth to cite a high number of large well-known international events as ESSDERC, EuroSOI, etc. Moreover, it would be important to emphasize meetings/workshops organized by academic partners (Livuni, UCL, WUT) and targeted industrial teams (ARM, ST, Soitec, ...) allowing rather open discussion with direct transfer of knowledge accumulated within academia to industry (both within and beyond Nanosil) and industrial feedback on roadmapping/ perspectives/ their short- and long-term interests.

In addition to workshops/schools for young researchers, **ten new university courses** (of more than **250 hours** in a total) in Nanosil-related fields have been initiated by Nanosil members during 2008-2010, promoting the Nanosil knowledge to students.

A database of NoE experienced lecturers (similarly to IEEE distinguished lecturers) with existing high-level/high-quality lectures is created Yearly updated pdf-version is available on the Nanosil web-site.

#### 5. Dissemination of knowledge

#### 5.1. Inside of NoE

Dissemination of knowledge within Nanosil is provided through the Executive & Scientific Committee meetings (every 3 months), Governing Board meetings, kick-off, inter-WP/FP and cross-WPs/FPs meetings.

**Nanosil web-site** eases exchange of information between partners. There exists a restricted area limited to consortium members where one can find for example ppt/pdf-files with presentations given by Nanosil partners or those given during different events supported by Nanosil; annual reports, selected exchanges, etc. Additionally, **exchanges/ trainings** of personnel played an important role in information/ideas/competences exchange between partners.

#### 5.2. Beyond NoE

Web-site of Nanosil was created in 2008. It aims to promote NoE activities such as workshops/ trainings and competences of Nanosil partners. Taking into account recommendations from the reviewers, during 2009 web-site was modified with particular attention to make it available, useful and attractive to a wider community, while some parts are still confidential (restricted to consortium area through the login-password). Additionally, processing, characterization and modeling platforms existing in Nanosil explicitly appear on the web-site. Furthermore, number of useful links and pdf files can be found on the site even in a public area, as e.g. pdf-version of Who is Who guide (as well as Who is Who guide of beyond Nanosil partners), List of national and EU projects of relevance, training/courses/PhD thesis topics available, open positions, some general Nanosil presentations, Agenda of Workshops, Conferences, etc. All the information on the web-site is regularly updated. "Breaking news" was initiated in 2009 and serve as another visual point to widely advertise top-level achievements/developments within Nanosil. It is available on the web-site and updated every month.

66 whorkshops/conferences/schools/etc were organized by Nanosil partners during 3 years of project: 13 in 2008, 21 in 2009 and 32 in 2010-11 either with or without direct financial support from Nanosil. It is interesting to point out that the numbers of organized events increases rather strongly from year to year. Such events accessible not only to Nanosil partners but to a wide scientific community are very important to disseminate knowledge gathered by Nanosil members and to widely promote our Network. Additionally, 8 researchers (mainly FP leaders) represented Nanosil at the EU-Russia Workshop organized in Moscow by the European Commission with support from the Russian National ICT Contact Point and the Ministry of Science and Education with objective of intensification of R&D cooperation between actors of the ICT value chain from both sides. Participation of Nanosil members participating in this event have been supported through the "exchanges procedure".

**Nanosil poster** was prepared end of 2008. It was then offered to all Nanosil partners to be posted in their labs and promote in such a way the research activities / networking within Nanosil.

Nanosil News letter 2009 was issued. It groups the most impressive Nanosil achievements during 2009. All flagship projects as well as simulation/characterization and processing workpackages presented their most important results. Additionally, targeting beyond Nanosil auditorium, some general information about Nanosil as well as WP5 information on the possibility for Beyond Nanosil institution to participate in the network (e.g. through exchanges and Who is Who guide on the Nanosil web-site) were included. Nanosil NewsLetter 2009 is available on Nanosil web-site in a public area and was also e-mailed to the available mail lists.

**Nanosil News letter 2010-11 is under preparation**. When finished it will also be available on Nanosil and SINANO Inst. web-sites as well as e-mailed to the available mail lists.

Furthermore, it is worth to point out an active participation of Nanosil partners in the **ENI2** initiative. It aims a creation of long and lasting **R&D infrastructure** (in another words ecosystem) for **European nanoelectronic innovations**, thus allowing **long-term integration** of academic institutions together with institutes, industries and SMEs.

Finally, achievements/knowledge gathered within Nanosil are widely disseminated through the **publications** in major international journals and participation of Nanosil members in international conferences/workshops. Table 5.1 summarizes number of publications and conference presentations prepared by Nanosil partners per year of the project. Only papers clearly acknowledged Nanosil were counted. One can see very high numbers of papers (more than 250) and presentations (about 400) were prepared by Nanosil partners over the 3 years of the project. Moreover, good evolution of both values over the project duration can be observed. It would be worth to pay attention that about 1/3 of the Nanosil conference presentations are invited, confirming recognition of expertise of Nanosil partners in related fields. We emphasize separately "joint" (i.e. prepared in collaboration between two or more partners) publications/presentations: about 40% of papers and 35% of presentations are joint.

Table 5.1. Summary on Nanosil publications and presentations.

|         | Pa                                       | pers                       | Conferences        |                      |  |  |  |
|---------|------------------------------------------|----------------------------|--------------------|----------------------|--|--|--|
|         | Joint                                    | Total                      | Joint              | Total                |  |  |  |
| 2008    | 38                                       | N/A                        | 41                 | 87                   |  |  |  |
|         | 30 published;<br>5 accepted; 3 submitted |                            |                    | 82 done; 5 accepted  |  |  |  |
| 2009    | 45                                       | 104                        | 43                 | 142                  |  |  |  |
|         | 36 published;                            | 77 published; 12 accepted; | 38 done; 5accepted | 133 done; 9 accepted |  |  |  |
|         | 4 accepted, 5 submitted                  | 15 submitted               |                    |                      |  |  |  |
| 2010-11 | 40                                       | 114                        | 52                 | 165                  |  |  |  |
|         | 32 published; 8 accepted                 | 98 published; 16 accepted  |                    |                      |  |  |  |

Furthermore, **2 books** jointly edited by Nanosil partners were published during 2010-11. First one, "Nanoscale CMOS: Innovative Materials, Modeling and Characterization", is entirely devoted to the results obtained by the groups involved in Nanosil. It addresses all WPs of Nanosil and covers both processing and characterization/modelling aspects. Second book "Semiconductor-on-Insulator Materials for nanoelectronics applications" was published by SPRINGER in 2011 as a result of SemOI Workshop jointly organized by UCL and ISP-Kiev and financially supported by Nanosil (see section 4.2). Comparing to the first one, it goes a bit further in addressing "more than moore" and "beyond CMOS" fields. It groups selected keynote works in the four areas: 1° new semiconductor-on-insulator materials; 2° physics of modern SemOI devices; 3° diagnostics of the SOI devices; 4° sensors and MEMS on SOI. More than half of chapters in this book were prepared by Nanosil partners. **33 Book chapters** were prepared by Nanosil partners; **12** of them are **joint**. It is worth to point out that these very high number of book chapters were written by Nanosil partners during last period of NANOSIL.

To demonstrate the **high level of research** performed within Nanosil and **their significant impact** on the scientific community, here below we show the **ratios of Nanosil partners' publications to the total number of publications** in selected journals with a high citation index and in major international conferences in 2010. (*in brackets are numbers for 2009 and 2008, respectively*).

- IEEE Electron Device Letters: 1.5%; i.e. 7 over 461 (4%, 15 over 419 and 3%; 13 over 392)
- IEEE Trans. on Electron Dev.: 7.9%, i.e. 36 over 458 (6.4%, 27 over 420 and 6% 28 over 462)
- **Journal of Applied Physics:** 0.5%, i.e. 11 over 2082 (0.6%, 14 over 2390, 0.3%; 11 over 3492)
- Applied Physics Letters: 1.1%; i.e. 27 over 2459 (0.52%, 15 over 2903 and 0.07%; 4 over 5419)
- Solid State Electronics: 11.5%, i.e. 33 over 288 (16.5%, 46 over 279 and 13%; 41 over 312)
- **IEDM:** 3.9-5.4 %; i.e. 8-11 over 205 (3.2-4.6%, 7-10 over 218 and 3-7%; 7-17 over 220)
- ESSDERC: 23.8 %; i.e. 24 over 101 (25%, 25 over 100 and 21%; 17 over 80)

We can see a clear tendency of increase in both numbers of publications and in percentages in 2009 comparing to 2008, which is especially strong in Physical journals. Then, in 2010 some change in balance between different journals (e.g. increase in IEEE TED, JAP and decrease in IEEE EDL) with about the same global numbers comparing to 2009 is observed. Finally, one can see a strong correlation between Nanosil penetration in more-EU based journals and conferences (SSE and ESSDERC) versus more US-based ones.

# 4.2 Use and dissemination of foreground

# Section A (public)

|     | TEMPLATE A1: LIST OF SCIENTIFIC (PEER REVIEWED) PUBLICATIONS, STARTING WITH THE MOST IMPORTANT ONES                                                         |                                    |                                             |                                     |                      |                      |                                |                   |                                                   |                                                                                       |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------|----------------------|----------------------|--------------------------------|-------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| NO. | Title                                                                                                                                                       | Main<br>author                     | Title of the<br>periodical or<br>the series | Number,<br>date or<br>frequenc<br>y | Publisher            | Place of publication | Year<br>of<br>publi-<br>cation | Relevant<br>pages | Permanent identifiers <sup>3</sup> (if available) | Is/Will<br>open<br>access <sup>4</sup><br>provide<br>d to<br>this<br>publicat<br>ion? |  |  |
| 1.  | Capacitor-less A-RAM SOI memory: Principles, scaling and expected performance                                                                               | N. Rodriguez<br>et al              | Solid-State<br>Electronics                  | Volume 59,<br>Issue 1               | Elsevier             |                      | 2011                           | pp. 44-49         | 10.1016/j.sse.2011.01.00<br>6                     | No                                                                                    |  |  |
| 2.  | Double-gate 1T-DRAM cell using nonvolatile memory function for improved performance                                                                         | K-H. Park et<br>al, INPG,<br>Korea | Solid-State Electronics                     | Volume 59,<br>Issue 1               | Elsevier             |                      | 2011                           | pp. 39-43         | 10.1016/j.sse.2011.01.007                         | No                                                                                    |  |  |
| 3.  | Detailed investigation of effective field, hole mobility and scattering mechanisms in GeOl and Ge pMOSFETs                                                  | Van den<br>Daele, INPG             | Solid-State Electronics                     | Volume: 59,<br>Issue 1              | Elsevier             |                      | 2011                           | pp. 25-33         | Doi:10.1016/j.sse.2011.01.0<br>14                 | No                                                                                    |  |  |
| 4.  | Effect of growth rate on the threading dislocation density in relaxed SiGe buffers grown by reduced pressure chemical vapour deposition at high temperature | A Dobbie, et al                    | Semiconductor Science and Technology        | Vol 25                              | Institute of Physics |                      | 2010                           | 085007            | doi:10.1088/0268-<br>1242/25/8/085007             | No                                                                                    |  |  |
| 5.  | Highly strained Si epilayers grown on SiGe/Si(100) virtual substrate by Reduced Pressure Chemical Vapour Deposition                                         | M. Myronov,<br>et al               | Physica Status Solidi C                     | Vol 8                               | Wiley                |                      | 2011                           | pp 952-955        | doi:10.1002/pssc.201000<br>255                    | No                                                                                    |  |  |

\_

<sup>&</sup>lt;sup>3</sup> A permanent identifier should be a persistent link to the published version full text if open access or abstract if article is pay per view) or to the final manuscript accepted for publication (link to article in repository).

<sup>&</sup>lt;sup>4</sup>Open Access is defined as free of charge access for anyone via Internet. Please answer "yes" if the open access to the publication is already established and also if the embargo period for open access is not yet over but you intend to establish open access afterwards.

| NANOSIL | Final Report | January 2008 to March 2011 | 51 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 6.  | Defect-related excess low-frequency noise in Ge-on-Si pMOSFETs                                                                             | E. Simoen, et al                                        | Electron Device Letter                   | Vol 32               | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                         | 2011 | pp 87-89     | http://dx.doi.org/10.1109/<br>LED.2010.2089968 | No |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------------|---------------------------------------------------|-----------------------------------------------------------|------|--------------|------------------------------------------------|----|
| 7.  | Mobility Enhancement in Strained n-<br>FinFETs: Basic Insight and Stress<br>Engineering                                                    | N. Serra et al;                                         | IEEE Trans. on<br>Electron Devices       | February             | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 482-490      | doi:10.1109/TED.2009.20<br>37369               | No |
| 8.  | An improved empirical approach to introduce quantization effects in the transport direction in multi-subband Monte Carlo simulations       | P.Palestri                                              | Semiconductor Science and technology     | Volume: 25,<br>No. 5 | IOP Publishing                                    |                                                           | 2010 | 055011       | doi: 10.1088/0268-<br>1242/25/5/055011         | No |
| 9.  | Simple and efficient modeling of the E–k relationship and low-field mobility in Graphene Nano-Ribbons                                      | M. Brescianiet al                                       | Solid-State Electronics                  | Sept.                | Elsevier                                          |                                                           | 2010 | 1015-1021    | doi:10.1016/j.sse.2010.0<br>4.038              | No |
| 10. | A quasi-analytical model for nanowire FETs with arbitrary polygonal cross section                                                          | L. De Michielis<br>et al                                | Solid-State Electronics                  | Sept                 | Elsevier                                          |                                                           | 2010 | 929 - 934    | doi:10.1016/j.sse.2010.0<br>4.039              | No |
| 11. | Failure of the Scalar Dielectric Function<br>Approach for the Screening Modeling in<br>Double-Gate SOI MOSFETs and in<br>FinFETs           | P.Toniutti et al                                        | IEEE Transactions on<br>Electron Devices | Nov.                 | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 3074-3083    | doi:10.1109/TED.2010.20<br>68990               | No |
| 12. | Pseudospectral Methods for the Efficient<br>Simulation of Quantization Effects in<br>Nanoscale MOS Transistors                             | Alan Paussa<br>et al.                                   | IEEE Transactions on Electron Devices    | Dec.                 | The Inst. of Electrical and Electronics Eng       | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 3239-3249    | doi:10.1109/TED.2010.20<br>81673               | No |
| 13. | Electric Field Control of Spin Rotation in Bilayer Graphene                                                                                | P. Michetti, et al                                      | Nano Letters                             | 10,11                | American<br>Chemical Society                      | 1155 Sixteenth<br>Street N.W.,<br>Washington, DC<br>20036 | 2010 | 4463 – 4469  | doi:10.1021/nl102298n                          | No |
| 14. | Simulation of hydrogenated graphene field-<br>effect transistors through a multiscale<br>approach                                          | G. Fiori, et al                                         | Phys. Rev. B                             | 82, 15               | American Physical<br>Society                      | One Physics<br>Ellipse<br>College Park, MD<br>20740       | 2010 | 153404       | doi:10.1103/PhysRevB.8<br>2.153404             | No |
| 15. | Barrier Lowering and Backscattering<br>Extraction in Short-Channel MOSFETs                                                                 | G. Giusi, et al                                         | IEEE Trans. on<br>Electron Devices       | 57, 9                | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 2132 – 2137  | doi:10.1109/TED.2010.20<br>55273               | No |
| 16. | Model and Performance Evaluation of Field-<br>Effect Transistors Based on Epitaxial<br>Graphene on SiC                                     | M.Cheli, et al -<br>IUNET Pisa                          | IEEE Transactions on Electron Devices    | 57, 8                | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 1936 – 1941  | doi:10.1109/TED.2010.20<br>51487               | No |
| 17. | Analytical Model of One-Dimensional<br>Carbon-Based Schottky-Barrier Transistors                                                           | P.Michetti,<br>G.lannaccone<br>- IUNET Pisa             | IEEE Trans. on<br>Electron Devices       | 57, 7                | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                         | 2010 | 1616 – 1625  | doi:10.1109/TED.2010.20<br>49219               | No |
| 18. | Statistical Theory of shot noise in quasi-<br>one-dimensional field-effect transistors in<br>the presence of electron-electron interaction | A. Betti, G.<br>Fiori, G.<br>Iannaccone -<br>IUNET Pisa | Physical Review B                        | 81, 7                | American Physical<br>Society                      | One Physics<br>Ellipse College<br>Park, MD 20740          | 2010 | 035329       | doi:10.1103/PhysRevB.8<br>1.035329             | No |
| 19. | Model of tunneling transistors based on graphene on SiC                                                                                    | P.Michetti, et                                          | Applied Physics Letters                  | 96                   | American Institute of Physics                     | New York 11747<br>516-576-2200                            | 2010 | 133508 – 1/3 | doi:10.1063/1.3361657                          | No |

| NANOSIL Final Report January 2006 to Warch 2011 52 / 10 | NANOSIL | Final Report | January 2008 to March 2011 | 52 / 107 |
|---------------------------------------------------------|---------|--------------|----------------------------|----------|
|---------------------------------------------------------|---------|--------------|----------------------------|----------|

|     |                                                                                                                                                                                  | al                                     |                                          |                            |                                                   |                                                  |      |              |                                    |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|----------------------------|---------------------------------------------------|--------------------------------------------------|------|--------------|------------------------------------|----|
| 20. | Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies                                                                               | I. Deretzis et al                      | Physical Review B                        | 81, 8                      | American Physical<br>Society                      | One Physics<br>Ellipse College<br>Park, MD 20740 | 2010 | 085427 – 1/5 | doi:10.1103/PhysRevB.8<br>1.085427 | No |
| 21. | Effective Mobility in Nanowire FETs under Quasi-Ballistic Conditions                                                                                                             | E. Gnani, et al                        | IEEE Trans. on<br>Electron Devices       | Volume: 57                 | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                | 2010 | 336 – 343    | doi:10.1109/TED.2009.20<br>35545   | No |
| 22. | A Low-Field Mobility Model for Bulk, Ultrathin Body SOI and Double-Gate n- MOSFETs With Different Surface and Channel Orientations—Part I: Fundamental Principles                | L. Silvestri, et al                    | IEEE Transactions on<br>Electron Devices | Volume: 57                 | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA                | 2010 | 1567 – 1574  | doi:10.1109/TED.2010.20<br>49210   | No |
| 23. | A Low-Field Mobility Model for Bulk,<br>Ultrathin Body SOI and Double-Gate n-<br>MOSFETs With Different Surface and<br>Channel Orientations—Part II: Ultra-Thin<br>Silicon Films | L. Silvestri, et al                    | IEEE Transactions on<br>Electron Devices | Volume: 57                 | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA                | 2010 | 1575 – 1582  | doi:10.1109/TED.2010.20<br>49211   | No |
| 24. | A Low-Field Mobility Model for Bulk and<br>Ultrathin-Body SOI p-MOSFETs With<br>Different Surface and Channel Orientations                                                       | L. Silvestri, et al                    | IEEE Transactions on<br>Electron Devices | Volume: 57                 | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA                | 2010 | 3287 – 3294  | doi:10.1109/TED.2010.20<br>78821   | No |
| 25. | Physics of Gate Modulated Resonant<br>Tunneling (RT)-FETs: Multi-Barrier<br>MOSFET for Steep Slope and High On-<br>Current                                                       | A. Afzalian et al                      | Solid State Electronics                  |                            | Elsevier                                          | The Netherlands                                  | 2011 | pp. 50-61    | doi:10.1016/j.sse.2011.0<br>1.016  | No |
| 26. | Quantum Confinement Effects in<br>Capacitance Behavior of Multigate Silicon<br>Nanowire MOSFETs                                                                                  | A. Afzalian et<br>al.: Tyndall,<br>UCL | IEEE Trans. on Nano-<br>technology       | Volume: 10,<br>march 2011, | IEEE                                              | Piscataway, NJ<br>08855-1331, USA                | 2010 | pp. 300-309  | doi:10.1109/TNANO.200<br>9.2039800 | No |
| 27. | Low temperature tunneling current enhancement in silicide/Si Schottky contacts with nanoscale barrier width                                                                      | N. Reckinger<br>et al                  | Applied Physics Letters                  | No 98, 2011                | American Institute of Physics                     | US                                               | 2011 | 112102       | doi:10.1063/1.3567546              | No |
| 28. | Gate-edge charges related effects and performance degradation in advanced multiple-gate MOSFETs                                                                                  | V. Kilchytska,<br>et al                | Solid State Electronics                  | Volume: 59,<br>2011        | Elsevier                                          | The Netherlands                                  | 2011 | pp. 18-24    | doi:10.1016/j.sse.2011.0<br>1.008  | No |
| 29. | Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides                                                     | T. Rudenko,<br>et al                   | Solid State Electronics                  | Volume: 54,<br>Feb. 2010   | Elsevier                                          | The Netherlands                                  | 2010 | pp. 164-170  | doi:10.1016/j.sse.2009.1<br>2.014  | No |
| 30. | Substrate impact on threshold voltage and subthreshold slope of sub-32 nm ultra thin SOI MOSFETs with thin buried oxide and undoped channel                                      | S. Burignant,<br>et al                 | Solid State Electronics                  | Volume: 54,<br>Issue 2     | Elsevier                                          | The Netherlands                                  | 2010 | pp. 213-219. | doi:10.1016/j.sse.2009.1<br>2.021  | no |
| 31. | Gm/ld Method for Threshold Voltage                                                                                                                                               | D. Flandre, et                         | IEEE Electron Dev.                       | Volume: 31,                | IEEE                                              | Piscataway, NJ                                   | 2010 | pp. 930-932  | doi:10.1109/LED.2010.20            | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 53 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

|     | Extraction Applicable in Advanced MOSFETs With Nonlinear Behavior Above Threshold                                                   | al                     | Lett.                           | Sept. 2010                  |                               | 08855-1331, USA                   |            |                           | 55829                                   |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-----------------------------|-------------------------------|-----------------------------------|------------|---------------------------|-----------------------------------------|----|
| 32. | 3D simulation of triple-gate MOSFETs with different mobility regions                                                                | J. Conde et al         | Microelectronic<br>Engineering  | 2011                        | Elsevier                      | The Netherlands                   | 2011       |                           | doi:10.1016/j.mee.2011.0<br>3.013       | No |
| 33. | Realization of ultra dense arrays of vertical silicon NWs with defect free surface and perfect anisotropy using a top-down approach | X-L. Han, et al        | Microelectronic<br>Engineering  |                             | Elsevier                      | The Netherlands                   | 2011       | on-line 4<br>january 2011 | doi:10.1016/j.mee.2010.1<br>2.102       | No |
| 34. | Conduction gap in double gate bilayer graphene structure                                                                            | V. Hung et al          | J. Phys.: Condens.<br>Matter    | No 22                       | IOP                           | UK                                | 2010       | 115304 (6<br>pages)       | doi: 10.1088/0953-<br>8984/22/11/115304 | No |
| 35. | Negative differential resistance in zigzag-<br>edge graphene nanoribbon junctions                                                   | V. Nam Do et al        | J. Appl. Phys.                  | No 107                      | American Institute of Physics | USA                               | 2010       | 063705 (5<br>pages)       | doi:10.1063/1.3340834                   | No |
| 36. | Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation                                    | D. Querlioz,           | J. Comput. Electron.            | No 9                        | Springer                      | The Netherlands                   | 2010       | 224-231                   | doi:10.1007/s10825-009-<br>0281-3       | No |
| 37. | Semi-classical and quantum transport in CNTFETs using Monte Carlo simulation                                                        | H. Nha<br>Nguyen et al | IEEE Trans. Electron<br>Devices | No 58                       | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2011       | 798-804                   | doi:10.1109/TED.2010.20<br>96820        | No |
| 38. | Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts                              | S. Habicht, et al      | Nanotechnology                  | Volume: 21,<br>No. 10, 2010 | IOP Publishing                |                                   | 2010       | 105701<br>(5 pages)       | doi: 10.1088/0957-<br>4484/21/10/105701 | No |
| 39. | Radio-Frequency Study of Dopant-<br>Segregated n-Type SB-MOSFETs on Thin-<br>Body SOI                                               | C. Urban et al         | Electron Device Letters         | Volume: 32,<br>Issue 6      | IEEE                          | Piscataway, NJ<br>08855-1331, USA | April 2010 | 537 - 539                 | doi:10.1109/LED.2010.20<br>45220        | No |
| 40. | Ultrathin Ni Silicides With Low Contact<br>Resistance on Strained and Unstrained<br>Silicon                                         | L. Knoll et al         | Electron Device Letters         | Volume: 31<br>Issue 4       | IEEE                          | Piscataway, NJ<br>08855-1331, USA | April 2010 | 350 - 352                 | doi:10.1109/LED.2010.20<br>41028        | No |
| 41. | Electrical characterization of TbScO3/TiN gate stacks in MOS capacitors and MOSFETs on strained and unstrained SOI                  | Özben et al            | ECS Transactions                | Volume:33.<br>No3           | The Electrochemical Society   |                                   | 2010       | 195-202                   | doi:10.1149/1.3481606                   | No |
| 42. | Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation                                  | Feste et al            | Journal of Applied<br>Physics   | Volume: 107<br>Issue 4      | American Institute of Physics |                                   | Jan. 2010  | 044510 (6 pages)          | doi:10.1063/1.3284089                   | No |
| 43. | Strain tensors in layer systems by precision ion channeling measurements                                                            | Trinkaus et al         | Journal of Applied<br>Physics   | Volume: 107<br>Issue 12     | American Institute of Physics |                                   | 2010       | 124906 (8<br>pages)       | doi:10.1063/1.3415530                   | No |
| 44. | Elastic strain and dopant activation in ion implanted strained Si nanowires                                                         | Minamisawa<br>et al    | Journal of Applied<br>Physics   | Volume: 108,<br>Issue 12    | American Institute of Physics |                                   | Dec. 2010  | 124908 (9<br>pages)       | doi:10.1063/1.3520665                   | No |
| 45. | Integration of LaLuO3 as High-k Dielectric on Strained and Unstrained SOI MOSFETs                                                   | Özben et al            | Electron Device Letters         | Volume: 32,                 | IEEE                          | Piscataway, NJ<br>08855-1331, USA | Jan. 2011  | 15-17                     | doi:10.1109/LED.2010.20<br>89423        | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 54 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

|     | With a Replacement Gate Process                                                                                                                        |                                     |                                                | Issue 1                |                               |                                   |                         |                         |                                   |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|------------------------|-------------------------------|-----------------------------------|-------------------------|-------------------------|-----------------------------------|----|
| 46. | Rare-earth oxide/TiN gate stacks on high mobility strained silicon on insulator for fully depleted metal-oxide-semiconductor field-effect transistors  | Özben et al                         | Journal of Vacuum<br>Science & Technology<br>B | Volume 29 ,<br>Issue 1 |                               |                                   | Jan 2011                | 01A903-1 to<br>01A903-5 | doi:10.1116/1.3533760             | No |
| 47. | Rare-Earth Scandate/TiN Gate Stacks in SOI MOSFETs Fabricated With a Full Replacement Gate Process                                                     | Özben et al                         | Trans. Electron Devices                        | Volume: 58,<br>No 3    | IEEE                          | Piscataway, NJ<br>08855-1331, USA | March<br>2011           | 617 - 622               | doi:10.1109/TED.2010.20<br>96509  | No |
| 48. | Ge quantum dot tunneling diode with room temperature negative differential resistance                                                                  | M. Oehme, et al                     | Applied Physics Letters                        | Volume7<br>Issue 1     | American Institute of Physics |                                   | 2010                    | 012101 (3<br>pages)     | doi:10.1063/1.3462069             | No |
| 49. | Multiwavelength micro-Raman analysis of strain in nanopatterned ultrathin strained silicon-on-insulator                                                | O.<br>Moutanabbir,<br>et al         | Applied Physics Letters                        | Volume 7,<br>Issue 5   | American Institute of Physics |                                   | 2010                    | 053105 (3<br>pages)     | doi:10.1063/1.3475399             | No |
| 50. | Composition and strain in thin Si1-x Gex virtual substrates measured by micro-Raman spectroscopy and x-ray diffraction                                 | T. S. Perova,<br>et al              | Journal of Applied<br>Physics                  | Volume 109,<br>Issue 3 | American Institute of Physics |                                   | 2011                    | 033502 (11<br>pages)    | doi:10.1063/1.3536508             | No |
| 51. | Lateral electronic transport in 2D arrays of oxidized Si nanocrystals on quartz: Coulomb blockade effect and role of hydrogen passivation              | P.<br>Manousiadis<br>et al          | Journal of Applied<br>Physics                  | Twice a month          | American Institute of Physics | USA                               | To appear<br>April 2011 | Not known<br>yet        | doi: 1063/1.3575331               | No |
| 52. | Nanowire transistors without junctions                                                                                                                 | JP Colinge et al                    | Nature Nano-<br>technology                     | Volume: 5,<br>No. 3    |                               |                                   | 2010                    | 225-229                 | doi:10.1038/NNANO.201<br>0.15     | No |
| 53. | LDD and Back-Gate Engineering for Fully<br>Depleted Planar SOI Transistors with Thin<br>Buried Oxide                                                   | R. Yan et al                        | IEEE Trans. on<br>Electron Devices             | Volume: 57,<br>no 6    | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010                    | 1319-1326               | doi:10.1109/TED.2010.20<br>46097  | No |
| 54. | Variable temperature characterization of low-dimensional effects in tri-gate SOI MOSFETs                                                               | C. Barrette et al                   | Solid-State Electronics                        | Volume: 54             | Elsevier                      |                                   | 2010                    | 1273–1277               | doi:10.1016/j.sse.2010.0<br>5.035 | No |
| 55. | Mobility Improvement in Nanowire Junctionless Transistors by Uniaxial Strain                                                                           | JP Raskin et<br>al, UCL,<br>Tyndall | Applied Physics Letters                        | Volume: 97             | American Institute of Physics |                                   | 2010                    | 042114                  | doi:10.1063/1.3474608             | No |
| 56. | Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors | N.D. Akhavan<br>et al               | Journal of Applied<br>Physics                  | Volume: 108            | American Institute of Physics |                                   | 2010                    | 034510                  | doi:10.1063/1.3457848             | No |
| 57. | Junctionless 6T SRAM cell                                                                                                                              | JP Colinge, et al                   | Electronics Letters                            | Volume: 46,<br>No. 22  | IEE                           |                                   | 2010                    | 1491–1492               | doi:10.1049/el.2010.2736          | No |
| 58. | Improvement of carrier ballisticity in junctionless nanowire transistors                                                                               | N.D.Akhavan<br>et al,               | Applied Physics Letters                        | Volume: 98             | American Institute of Physics |                                   | 2011                    | 103510.1-3              | doi:10.1063/1.3559625             | No |
| 59. | Random telegraph-signal noise in junctionless transistors                                                                                              | A. Nazarov, et                      | Applied Physics Letters                        | Volume: 98,            | American Institute of Physics |                                   | 2011                    | pp.<br>103510.1-3       | doi:10.1063/1.3557505             | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 55 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

|     |                                                                                                                                                                                          | al                             |                                         |                   |                               |                                   |      |                                   |                                        |    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-------------------|-------------------------------|-----------------------------------|------|-----------------------------------|----------------------------------------|----|
| 60. | Low-frequency noise in junctionless multigate transistors                                                                                                                                | D. Jang et al                  | Applied Physics Letters                 | Volume: 98        | American Institute of Physics |                                   | 2011 | p. 133502                         | doi:10.1063/1.3569724                  | No |
| 61. | A systematic study of "NH42S passivation "22%, 10%, 5%, or 1% on the interface properties of the Al2O3 / In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers | Eamon<br>O'Connor<br>et al     | Journal of Applied<br>Physics           | 109               | American Institute of Physics | Journal of Applied<br>Physics     | 2011 | pp. 024101-<br>1 to 024101-<br>10 | doi:10.1063/1.3533959                  | No |
| 62. | Electrical Properties of LaLuO3/Si(100)<br>Structures Prepared by Molecular Beam<br>Deposition                                                                                           | Yu.<br>Gomeniuk, et<br>al.     | ECS Transactions                        | 33 (3)            | The Electrochemical Society   | ECS Transactions                  | 2010 | pp. 221-227                       | doi:10.1149/1.3481609                  | No |
| 63. | High-frequency compact analytical noise model of gate-all-around MOSFETs                                                                                                                 | A. Lázaro, et al               | Semiconductor Science<br>& Technology   | Volume: 25 (3)    | IOP                           |                                   | 2010 | pp. 035015<br>(1-10)              | doi: 10.1088/0268-<br>1242/25/3/035015 | No |
| 64. | Analytical Modeling of the Gate Tunneling<br>Leakage for the Determination of Adequate<br>High-K Dielectrics in 22 nm Double-Gate<br>SOI MOSFETs                                         | G. Darbandy<br>et al           | Solid-State Electronics                 | Volume 54<br>(10) | Elsevier                      | The Netherlands                   | 2010 | pp. 1083-<br>1087                 | doi:10.1016/j.sse.2010.0<br>6.015      | No |
| 65. | The equivalent thickness concept for doped symmetric DG MOSFETs                                                                                                                          | J-M. Sallese<br>et al          | IEEE Trans. on<br>Electron Devices      | Volume 57 (11)    | IEEE                          |                                   | 2010 | pp. 2917-<br>2924                 | doi:10.1109/TED.2010.20<br>71090       | No |
| 66. | Compact model for long-channel cylindrical surrounding-gate MOSFETs valid from low to high doping concentrations                                                                         | M.<br>Cheralathan,<br>et al    | Solid-State Electronics                 | Volume: 55 (1)    | Elsevier                      | The Netherlands                   | 2011 | pp. 13-18                         | doi:10.1016/j.sse.2010.0<br>8.015      | No |
| 67. | An analytical model for square GAA<br>MOSFETs including quantum effects                                                                                                                  | E. Moreno, et al               | Solid State Electronics                 | Volume: 54        | Elsevier                      | U.K.                              | 2010 | 1463-1469                         | doi:10.1016/j.sse.2010.0<br>5.032      | No |
| 68. | Hole transport in DGSOI devices:<br>Orientation and silicon thickness effects                                                                                                            | L. Donetti et al               | Solid State Electronics                 | Volume 54         | Elsevier                      | U.K.                              | 2010 | 191-195                           | doi:10.1016/j.sse.2009.1<br>2.018      | No |
| 69. | An in-depth simulation study of Coulomb mobility in ultra-thin-body SOI MOSFETs                                                                                                          | F Jimenez-<br>Molinos,         | Semiconductor Science and technology    | Volume 25         | Institute of Physics          | U.K.                              | 2010 | 055002<br>(8pp)                   | doi: 10.1088/0268-<br>1242/25/5/055002 | No |
| 70. | A Model of the Gate Capacitance of<br>Surrounding<br>Gate Transistors: Comparison With<br>Double-Gate MOSFETs                                                                            | F. Ruiz, et al                 | IEEE Transaction on<br>Electron Devices |                   | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010 |                                   | doi:10.1109/TED.2010.20<br>58630       | No |
| 71. | Why the Universal Mobility Is Not                                                                                                                                                        | S.<br>Cristoloveanu,<br>et al. | IEEE Trans. on<br>Electron Devices      | Volume 57         | IEEE Press                    | Piscataway, NJ<br>08855-1331, USA | 2010 | 1327-1333                         | doi:10.1109/TED.2010.20<br>46109       | No |
| 72. | An Analytical I–V Model for Surrounding-<br>Gate Transistors That Includes Quantum<br>and Velocity Overshoot Effects                                                                     | J. B. Roldán,<br>et al.        | IEEE Trans. on<br>Electron Devices      | Volume 57         | IEEE Press                    | Piscataway, NJ<br>08855-1331, USA | 2010 | 2925-2933                         | doi:10.1109/TED.2010.20<br>67217       | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 56 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 73. | Simulation of the electrostatic and transport properties of 3D-stacked GAA silicon nanowire FETs                                 | F.G. Ruiz et al        | Solid State Electronics                  | Volume 59                 | Elsevier                      | UK                                | 2011 | 62-69             | doi:10.1016/j.sse.2011.0<br>1.005                              | No              |
|-----|----------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|---------------------------|-------------------------------|-----------------------------------|------|-------------------|----------------------------------------------------------------|-----------------|
| 74. | Multiparameter admittance spectroscopy                                                                                           | O, Engstrom, et al     | ECS Transactions                         | 35(3)                     | ECS                           | Piscataway, NJ<br>08855-1331, USA | 2010 | 257-              | doi:10.1109/TED.2010.20<br>49064                               | Probably not    |
| 75. | Characterization of traps in the transition region at the HfO2/SiOx interface by thermally stimulated currents                   | B. Raeissi             | J. Electrochem. Soc.                     | 158(3)                    |                               |                                   | 2011 | G63 – G70         | doi: 10.1149/1.3530845                                         | Probably<br>not |
| 76. | Suppression of gate-induced drain leakage<br>by optimization of junction profiles in 22 nm<br>and 32 nm SOI nFETs                | Andreas<br>Schenk      | Solid-State Electronics                  | No 54                     | Elsevier                      | US, UK, Japan,<br>Singapore       | 2010 | pp. 115 -<br>122  | doi:10.1016/j.sse.2009.1<br>2.005.                             | No              |
| 77. | CV Measurements on LaLuO3 Stack MOS<br>Capacitor Using a New 3-Pulse Technique                                                   | N. Sedghi<br>LIVUNI    | J. of Vacuum Science<br>and Technology B | Volume: 29, issue 1, 2011 | American Vacuum<br>Society    | USA                               | 2011 | 01AB03-1 -<br>6   | doi:10.1116/1.3533267                                          | No              |
| 78. | Linearity and mobility degradation in strained Si MOSFETs with thin gate dielectrics                                             | OM Alatise, et al      | Solid State Electronics                  | Volume: 54, no. 6,        | Elsevier                      | The Netherlands                   | 2010 | pp. 628-<br>634,  | doi:10.1016/j.sse.2009.1<br>2.036                              | No              |
| 79. | The high-mobility bended n-channel silicon nanowire transistor                                                                   | KE Moselund,<br>et al  | IEEE Trans. on<br>Electron Devices       | Volume: 57,<br>no. 4      | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010 | p. 866-876        | doi:10.1109/TED.2010.20<br>40939                               | No              |
| 80. | The impact of self-heating and SiGe strain-<br>relaxed buffer thickness on the analog<br>performance of strained Si nMOSFETs     | OM Alatise et al.      | Solid State Electronics                  | Volume: 54, no. 3,        | Elsevier                      | The Netherlands                   | 2010 | pp. 327-335       | doi:10.1016/j.sse.2009.0<br>9.029                              | No              |
| 81. | Silicon nanowires with lateral uniaxial tensile stress profiles for high electron mobility gate-all-around MOSFETs               | M Najmzadeh,<br>et al. | Microelectronic<br>Engineering           | Volume: 87                | Elsevier                      | The Netherlands                   | 2010 | pp. 1561-<br>1565 | doi:10.1016/j.mee.2009.1<br>1.024                              | No              |
| 82. | Strained Si heterojunction bipolar transistor                                                                                    | S Persson et al        | IEEE Trans. on Electron<br>Devices       | vol 57,                   | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010 | p. 1243           | doi:10.1109/TED.2010.20<br>45667                               | No              |
| 83. | Direct measurement of MOSFET channel<br>strain by means of backside etching and<br>Raman spectroscopy on long channel<br>devices | RMB Agaiby,<br>et al   | IEEE Electron Device<br>Letters          | Volume: 31,<br>no. 5      | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010 | pp. 419-421       | doi:10.1109/LED.2010.20<br>43496                               | No              |
| 84. | Statistical-Variability Compact-Modeling<br>Strategies for BSIM4 and PSP                                                         | B. Cheng et al         | IEEE Design & Test of<br>Computers       | Volume: 27,<br>No.2       |                               | USA                               | 2010 | 26-35             | http://doi.ieeecomputerso<br>ciety.org/10.1109/MDT.2<br>010.53 | No              |
| 85. | Surface-energy triggered phase formation and epitaxy in nanometer-thick Ni1-xPtx silicide films                                  | J. Luo, et al          | Applied Physics Letters                  | 96                        | American Institute of Physics |                                   | 2010 | 031911 1-3        | doi:10.1063/1.3291679                                          | No              |
| 86. | Interaction of NiSi with dopants for metallic source/dran applications                                                           | J. Luo, et al.         | Journal of Vaccum<br>Science Technology  | B28                       | American Vacuum<br>Society    | USA                               | 2010 | C1 1-11           | doi:10.1116/1.3248267                                          | No              |

| THAT REPORT Samuary 2000 to Water 2011 57/10 | NANOSIL | Final Report | January 2008 to March 2011 | 57 / 107 |
|----------------------------------------------|---------|--------------|----------------------------|----------|
|----------------------------------------------|---------|--------------|----------------------------|----------|

| 87. | Analytical modeling of direct tunneling current through gate stacks for the determination of suitable high-k dielectrics for nanoscale double-gate MOSFETs         | G. Darbandy,                                         | Semiconductor Science and Technology                                      | Volume: 26 (4)           | IOP                           |                                   | 2011 |                    | doi: 10.1088/0268-<br>1242/26/4/045002               | No  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|-------------------------------|-----------------------------------|------|--------------------|------------------------------------------------------|-----|
| 88. | Simulation study of the on-current improvements in Ge and sGe versus Si and sSi nano-MOSFETs                                                                       | F. Conzatti et al                                    | IEDM                                                                      | Dec.                     | IEEE                          | Piscataway, NJ<br>08855-1331, USA | 2010 |                    |                                                      | No  |
| 89. | Full band assessment of phonon-limited mobility in Graphene NanoRibbons                                                                                            | A. Betti, et al                                      | Proceeding of the IEDM Tech. Dig.                                         |                          |                               | Piscataway, NJ<br>08855-1331, USA | 2010 | 32.2.1-4           |                                                      | No  |
| 90. | Issues associated to rare earth silicide integration in ultra thin FD SOI Schottky barrier nMOSFETs                                                                | G. Larrieu et al                                     | Silicon-on-Insulator<br>Technology and<br>Devices 14                      | Volume 19,<br>Issue 4    |                               |                                   | 2009 | pp 201-207         | http://dx.doi.org/10.1149/<br>1.3117410              | No  |
| 91. | UHV Fabrication of the Ytterbium Silicide as<br>Potential low Schottky Barrier S/D Contact<br>Material for n-type MOSFET                                           | D. Yarekha et al                                     | Silicon-on-Insulator<br>Technology and<br>Devices 14' ECS<br>transactions | Volume 19,<br>Issue 1    |                               |                                   | 2009 | pp 339-344         | http://dx.doi.org/10.1149/<br>1.3118961              | No  |
| 92. | Optimization of RF performance of valence band-edge metallic S/D junctions in SOI MOSFETs via dopant segregation engineering                                       | R. Valentin et al                                    | IEEE Electron Device<br>Letters                                           | Volume 30,<br>Issue11    | IEEE                          |                                   | 2009 | pp 1197 -<br>1199  | http://dx.doi.org/10.1109/<br>LED.2009.2031254       | No  |
| 93. | Nanosil Network of Excellence Silicon-<br>based nanostructures and nanodevices for<br>long-term nanoelectronics applications                                       | F. Balestra et al                                    | Materials Science in<br>Semiconductor<br>Processing                       | Volume 11,<br>Issue 5    |                               |                                   | 2008 | pp 148 -159        | http://dx.doi.org/10.1016/j<br>.mssp.2008.09.017     | No  |
| 94. | Scaling potential and MOSFET integration of thermally stable Gd silicate dielectrics                                                                               | H.D.B. Gottlob<br>et al                              | Microelectronic<br>Engineering                                            | Volume 86,<br>Issues 7-9 | Elsevier                      |                                   | 2009 | pp. 1642-<br>1645  | http://dx.doi.org/10.1016/j<br>.mee.2009.03.084      | No  |
| 95. | Leakage current effects on C-V plots of high-k MOS capacitors                                                                                                      | Y. Lu et al                                          | J. Vac. Sci. Technol. B                                                   | Volume 27,<br>Issue 1    |                               |                                   | 2009 | pp. 352-355        | http://dx.doi.org/10.1116/<br>1.3025910              | No  |
| 96. | Analysis of electron mobility in HfO2 /TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge | M. A. Negara<br>et al                                | Journal of Applied<br>Physics                                             | Volume 5,<br>Issue 2     | American Institute of Physics |                                   | 2009 | 24510              | http://dx.doi.org/10.1063/<br>1.3068367              | No  |
| 97. | Charging phenomena at the interface between high-k dielectrics and SiOx interlayers                                                                                | O. Engstrom,<br>Chalmers,<br>Livuni,<br>Tyndall, AMO | Journal of<br>Telecommunications<br>and Information<br>Technology         | 1/2010                   |                               |                                   | 2010 | 10-18              | Not available                                        | Yes |
| 98. | Silicon nanowires with lateral uniaxial tensile stress profiles for high electron mobility gate-all-around MOSFETs                                                 | M. Najmzadeh<br>et al                                | Microelectronic<br>Engineering                                            | Volume: 87,<br>No. 5-8   | Elsevier                      |                                   | 2010 | pp. 1561-<br>1565  | http://dx.doi.org/10.1016/j<br>.mee.2009.11.024      | No  |
| 99. | TEM analysis of Ge-on-Si MOSFET structures with HfO2 dielectric for high performance PMOS device technology                                                        | DJ Norris et al                                      | Journal of Physics:<br>Conference Series                                  | Volume 209,<br>Number 1  |                               |                                   | 2010 | Ser. 209<br>012061 | http://dx.doi.org/10.1088/<br>1742-6596/209/1/012061 | No  |

| NANOSIL | Final Report | January 2008 to March 2011 | 58 / 107  |
|---------|--------------|----------------------------|-----------|
| MINOBIL | i mai report | January 2000 to March 2011 | 36 / 10 / |

| 100. | Full quantum treatment of surface roughness effects in Silicon nanowire and double gate FETs                                                                            | M.G. Pala et al                  | Journal of<br>Computational<br>Electronics | Volume 8,<br>Numbers 3-4 |                               | 2009 | pp 374-381        | http://dx.doi.org/10.1007/<br>s10825-009-0289-8      | No |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|--------------------------|-------------------------------|------|-------------------|------------------------------------------------------|----|
| 101. | Channel-Length Dependence of Low-Field Mobility in Silicon-Nanowire FETs                                                                                                | S. Poli et al                    | IEEE Electron Devices<br>Letters           | Volume 30<br>Issue11     |                               | 2009 | pp. 1212-<br>1214 | http://dx.doi.org/10.1109/<br>LED.2009.2031418       | No |
| 102. | Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs                                                                           | K. Rogdakis et al                | Nanotechnology                             | Volume 20,<br>Number 29  | IOP Publishing                | 2009 | p. 295202         | http://dx.doi.org/10.1088/<br>0957-4484/20/29/295202 | No |
| 103. | Full Quantum Treatment of Remote<br>Coulomb Scattering in Silicon Nanowire<br>FETs                                                                                      | S. Poli et al                    | Electron Devices, IEE                      | Volume 56<br>Issue 6     |                               | 2009 | pp. 1191-<br>1198 | http://dx.doi.org/10.1109/<br>TED.2009.2019380       | No |
| 104. | Schottky barrier lowering with the formation of crystalline Er silicide on n-Si upon thermal annealing                                                                  | N. Reckinger et al               | Applied Physics Letters                    | Volume 94<br>Issue 19    | American Institute of Physics | 2009 | 191913            | http://dx.doi.org/10.1063/<br>1.3136849              | No |
| 105. | An electrical evaluation method for the silicidation of silicon nanowires                                                                                               | X. Tang et al                    | Applied Physics Letters                    | Volume 95                | American Institute of Physics | 2009 | 23106             | http://dx.doi.org/10.1063/<br>1.3171929              | No |
| 106. | Confind energy states in semiconductors detected by a resonant differential capacitance method                                                                          | O. Engström et al                | Applied Physics Letters                    | Volume 95                | American Institute of Physics | 2009 |                   | http://dx.doi.org/10.1063/<br>1.3168408              | No |
| 107. | Investigation of oxidation-induced strain in a top-down Si nanowire platform                                                                                            | M Najmzadeh<br>et al             | Microelectronic<br>Engineering             | Volume 86,<br>Issues 7-9 | Elsevier                      | 2009 | 1964              | http://dx.doi.org/10.1016/j<br>.mee.2009.03.086      | No |
| 108. | Reduced Electric Field in Junctionless<br>Transistors                                                                                                                   | JP. Colinge et al                | APPLIED PHYSICS<br>LETTERS                 | Volume 96<br>Issue 7     | American Institute of Physics | 2010 |                   | http://dx.doi.org/10.1063/<br>1.3299014              | No |
| 109. | Classification of energy levels in quantum dot structures by means of depleted layer spectroscopy                                                                       | M.Kaniewska<br>et al             | Journal of electronic materials            | Volume 39,<br>Number 6   |                               | 2010 | 766-772           | http://dx.doi.org/10.1007/<br>s11664-010-1125-4      | No |
| 110. | Ultra compact FDSOI transistors including strain and orientation : processing and performance                                                                           | C. Fenouillet-<br>Beranger et al | ECS Transactions                           | Volume 19,<br>Issue 4    | ECS                           | 2009 | pp 55–64          | http://dx.doi.org/10.1149/<br>1.3117392              | No |
| 111. | Floating-body SOI memory: concepts, physics and challenges                                                                                                              | M. Bawedin et al                 | ECS Transactions                           | Volume 19,<br>Issue 4    | ECS                           | 2009 | pp 243–256        | http://dx.doi.org/10.1149/<br>1.3117415              | No |
| 112. | Low-temperature measurements on<br>Germanium-on-Insulator pMOSFETs:<br>evaluation of the background doping level<br>and modeling of the threshold voltage<br>dependence | W. Van Den<br>Daele et al        | ECS Transactions                           | Volume 19,<br>Issue 4    | ECS                           | 2009 | pp 145–152        | http://dx.doi.org/10.1149/<br>1.3117403              | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 59 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 113. | Low-temperature characterization and modeling of advanced GeOI pMOSFETs: mobility mechanisms and origin of the parasitic conduction                                    | W. Van Den<br>Daele et al         | Solid State Electronics                                                                        | Volume 54,<br>Issue 2,   | Elsevier                      |    | 2010                 | Pages 205-<br>212 | http://dx.doi.org/10.1016/j<br>.sse.2009.12.020  | No |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----|----------------------|-------------------|--------------------------------------------------|----|
| 114. | DC and Low Frequency Noise<br>Characterization of FinFET Devices                                                                                                       | K.<br>Bennamane et<br>al          | Solid State Electronics                                                                        | Volume 53                | Elsevier                      |    | 2009                 | 1263–1267         | http://dx.doi.org/10.1016/j<br>.sse.2009.09.032  | No |
| 115. | Piezoresistance Effect of Strained and<br>Unstrained Fully-Depleted Silicon-On-<br>Insulator MOSFETs Integrating an<br>Hf02/TiN Gate Stack                             | F. Rochette et al                 | Solid-State Electronics                                                                        | Volume 53,<br>Issue 3    | Elsevier                      |    | 2009                 | pp 392-396        | http://dx.doi.org/10.1016/j<br>.sse.2009.01.017  | No |
| 116. | A comprehensive study of magnetoresistance mobility in short channel transistors: Application to strained and unstrained silicon-on-insulator field-effect transistors | M. Cassé et al                    | Journal of Applied<br>Physics                                                                  | Volume 105               | American Institute of Physics |    | 2009                 | pp. 084503        | http://dx.doi.org/10.1063/<br>1.3097764          | No |
| 117. | Mobility Extraction in SOI MOSFETs with sub 1 nm Body Thickness                                                                                                        | M. Schmidt et al                  | Solid State Electronics                                                                        | Volume 53,<br>Issue 12   | Elsevier                      |    | 2009                 | pp. 1246–<br>1251 | http://dx.doi.org/10.1016/j<br>.sse.2009.09.017  | No |
| 118. | Direct protein detection with a nano-<br>interdigitated array gate MOSFET                                                                                              | X. Tang et al                     | Biosensors &<br>Bioelectronics                                                                 | Volume: 24,<br>Issue: 12 | Elsevier                      |    |                      | pp 3531-<br>3537  | http://dx.doi.org/10.1016/j<br>.bios.2009.05.012 | No |
| 119. | Improved effective mobility extraction in MOSFETs                                                                                                                      | S.M. Thomas, et al.               | Solid State Electronics                                                                        | Volume 53                | Elsevier                      | UK | 2009                 | pp. 1252-<br>1256 |                                                  | No |
| 120. | Experimental and physics based modeling assessment of strain induced mobility enhancement in FinFETs                                                                   | N.Serra,<br>F.Conzatti, et<br>al. | IEDM Tech Dig. 4.2                                                                             |                          |                               |    | 2009                 | Page(s): 1 -<br>4 | 10.1109/IEDM.2009.5424<br>419                    | No |
| 121. | Arsenic-Segregated Rare Earth Silicide<br>Junctions: Reduction of Schottky Barrier<br>and Integration in Metallic n-MOSFETs on<br>SOI                                  | G. Larrieu,                       | IEEE Electron Device<br>Letters                                                                | Volume:30,<br>n°11       | IEEE                          |    | December<br>2009     | pp. 1266-<br>1268 | Doi:10.1109/LED.2009.2<br>033085                 | No |
| 122. | Implementation of the symmetric doped double-gate MOSFET model in Verilog-A for circuit simulation                                                                     | J. Alvarado et al.                | International Journal of<br>Numerical Modelling:<br>Electronic Networks,<br>Devices and Fields | Volume 23,               |                               |    | March/Apr<br>il 2010 | pages 88–<br>106  | DOI: 10.1002/jnm.725                             | No |
| 123. | Accurate prediction of the volume inversion impact on undoped Double Gate MOSFET capacitances                                                                          | O. Moldovan,<br>et al.            | International Journal of<br>Numerical Modelling:<br>Electronic Networks,<br>Devices and Fields | Volume 23,               | Wiley                         |    | 2010                 | pages 447–<br>457 | DOI: 10.1002/jnm.745                             | No |
| 124. | Small-Signal Analysis of High-Performance<br>p- and n-type SOI SB-MOSFETs with<br>Dopant Segregation                                                                   | C. Urban, et al.                  | Solid State Electronics                                                                        |                          | Elsevier                      |    |                      |                   |                                                  | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 60 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 125. | Low Subthreshold Slope in Junctionless<br>Multigate Transistors                                                                   | CW. Lee, et al.              | Applied Physics Letters                                           | 96                    | American Institute of Physics                     |                                   | 2010               | 102106            | doi:10.1063/1.3358131                   | No |
|------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------------|---------------------------------------------------|-----------------------------------|--------------------|-------------------|-----------------------------------------|----|
| 126. | Multi-gate Devices for High Performance,<br>Ultra Low Power and Memory applications                                               | F. Balestra                  | Invited paper, ECS<br>Transactions,"ULSI<br>Process Integration " | Volume 25,<br>Issue 7 | ,                                                 |                                   | 2009               | pp. 77-90         | http://dx.doi.org/10.1149/<br>1.3203945 | No |
| 127. | Three-Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs                                             | C. Buran, et al.             | IEEE Trans. Electron<br>Devices                                   | Volume 56,<br>no. 10  |                                                   |                                   | Oct. 2009          | pp. 2186-<br>2192 | Doi:<br>10.1109/TED.2009.2028<br>382    | No |
| 128. | Effects of Carbon on Schottky Barrier<br>Heights of NiSi Modified by Dopant<br>Segregation                                        | J. Luo, et al.               | Electron Device Letters,<br>IEEE                                  | Volume: 30<br>Issue:6 |                                                   |                                   | 2009               | 608 - 610         | Doi:<br>10.1109/LED.2009.20182<br>85    | No |
| 129. | Fully Depleted UTB and Trigate N-Channel MOSFETs Featuring Low-Temperature PtSi Schottky-Barrier Contacts With Dopant Segregation | V.<br>Gudmundsson<br>, et al | IEEE Electron Device                                              | Letters 30,<br>541.   | IEEE                                              |                                   | 2009               |                   | Doi:<br>10.1109/LED.2009.20159<br>00    | No |
| 130. | Perspectives of graphene nanoelectronics: probing technological options with modeling                                             | G.<br>lannacconeet<br>al.    | IEDM                                                              |                       |                                                   |                                   | 2009               | pp.245-248        | Doi:<br>10.1109/IEDM.2009.5424<br>376   | No |
| 131. | Physical insights on graphene nanoribbon mobility through atomistic simulations                                                   | A. Betti, et al              | IEDM                                                              |                       |                                                   |                                   | 2009               | pp.897-900        |                                         | No |
| 132. | Ultralow-Voltage Bilayer Graphene Tunnel FET                                                                                      | G. Fiori et al               | IEEE Electron Device<br>Letters                                   | Volume 30, 10         |                                                   |                                   | 2009               | pp.1096-<br>1098  | DOI:<br>10.1109/LED.2009.20282<br>48    | No |
| 133. | Shot Noise Suppression in Quasi-One-<br>Dimensional Field-Effect Transistors                                                      | A. Betti, et al.             | IEEE Trans. Electron<br>Devices                                   | Volume 59, 9          | IEEE                                              |                                   | 2009               | pp.2137-<br>2143  | Doi:<br>10.1109/TED.2009.2026<br>512    | No |
| 134. | On the Possibility of Tunable-Gap Bilayer Graphene FET                                                                            | G. Fiori, et al              | IEEE Electron Device<br>Letters                                   | Volume: 30, 3         | IEEE                                              |                                   | 2009               | pp.261 – 264      |                                         | No |
| 135. | Analytical Model of Nanowire FETs in a<br>Partially Ballistic or Dissipative Transport<br>Regime                                  | P. Michetti, et al.          | IEEE Transaction<br>Electron Devices,                             | Volume: 56, issue 7   | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA | 2009               | pp.1402 –<br>1410 | Doi:<br>10.1109/TED.2009.2021<br>720    | No |
| 136. | A Semianalytical Model of Bilayer-<br>Graphene Field-Effect Transistor                                                            | M. Cheli, et al.             | IEEE Trans. Electron<br>Devices                                   | Volume: 56            | The Inst. of Electrical and Electronics Eng       | Piscataway, NJ<br>08855-1331, USA | 2009               | pp. 2979-<br>2986 |                                         | No |
| 137. | Semiclassical Modeling of Quasi-Ballistic<br>Hole                                                                                 | M. De<br>Michielis, et al.   | IEEE Transactions on Electron Devices                             | Volume: 56,<br>n°9    | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA | Septembe<br>r 2009 | pp. 2081-<br>2091 | 10.1109/TED.2009.2026<br>388            | No |
| 138. | Simulation Study of Coulomb Mobility in<br>Strained Silicon                                                                       | F. Driussi et al.            | IEEE Transactions on<br>Electron Devices                          | Volume:56,<br>N°.9    | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA | Sept.<br>2009      | pp.2052-<br>2059  | Doi:<br>10.1109/TED.2009.2026<br>394    | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 61 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 139. | Theory of the Motion at the band crossing                                                                    |                          |                                                             |                           |                               | March     | p. 053702-1                  | doi:10.1063/1.3078039                     | No |
|------|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------|---------------------------|-------------------------------|-----------|------------------------------|-------------------------------------------|----|
|      | points in bulk semiconductor crystals and in inversion layers                                                | D. Esseni, et al.        | Journal of Applied Physics                                  | Volume: 105,<br>no. 5     | American Institute of Physics | 2009      | - 053702-11                  |                                           |    |
| 140. | Multi-Subband Monte Carlo simulations of ION degradation due to fin thickness fluctuations in FinFETs        | N. Serra, et al.         | Solid-State Electronics                                     | Volume: 53, issue 4       | Elsevier                      | Feb. 2009 | pp. 424-432                  | Doi:<br>doi:10.1016/j.sse.2008.0<br>9.021 | No |
| 141. | Drain current improvements in uniaxially strained p-MOSFETs: A Multi-Subband Monte Carlo study               | F. Conzatti, et al.      | Solid-State Electronics                                     | Volume: 53                | Elsevier                      | May 2009  | pag. 706-<br>711             | Doi:<br>10.1109/ESSDERC.2008<br>.4681745  | No |
| 142. | Multiscale simulation of carbon nanotube devices                                                             | C. Adessi, et al.        | Comptes Rendus<br>Physique                                  | Volume 10, n° 4           | Elsevier Masson               | 2009      | 305-319                      | Doi :<br>10.1016/j.crhy.2009.05.0<br>04   | No |
| 143. | Phonon effect on single electron transport in two-dot semiconductor devices                                  | A. Valentin, et al.      | Journal of Applied<br>Physics                               | Volume: 106<br>Issue: 4   | American Institute of Physics | 2009      | 044501                       | Doi: 10.1063/1.3186035                    | No |
| 144. | Controllable spin-dependent transport in armchair graphene nanoribbon structures                             | V. Hung<br>Nguyen et al. | Journal of Applied<br>Physics                               | Volume: 106               | American Institute of Physics | 2009      | 053710                       | doi:10.1063/1.3212984                     | No |
| 145. | Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport      | D. Querlioz, et al.      | Journal of Computational Electronics                        | Volume 9,<br>Numbers 3-4  |                               | 2009      | 224-231                      | DOI: 10.1007/s10825-<br>010-0319-6        | No |
| 146. | Resonant tunneling and negative transconductance in single barrier bilayer graphene structure                | V. Hung<br>Nguyen et al. | Applied Physics Letters                                     | Volume 95 /<br>Issue 23   | American Institute of Physics | 2009      | 232115                       | doi:10.1063/1.3273376                     | No |
| 147. | Integration of Gd silicate / TiN gate stacks into SOI n-MOSFETs                                              | M. Schmidt, et al.       | Microelectron., Eng.                                        | Volume 86,<br>Issues 7-9, |                               | 2009      | pp. 1683-<br>1685            | doi:10.1016/j.mee.2009.0<br>3.064         | No |
| 148. | Measurement of effective electron mass in biaxial tensile strained silicon on insulator                      | S. F. Feste, et al.      | Applied Physics Letter                                      | Volume: 95<br>Issue:18    |                               | 2009      | 182101                       | Doi: 10.1063/1.3254330                    | No |
| 149. | Silicon Nanowire FETs with Uniaxial Tensile Strain                                                           | Feste, S.F. et al.       | Solid-State Electronics                                     | Volume: 53                | Elsevier                      | 2009      | 1257-1262                    | doi:10.1016/j.sse.2009.1                  | No |
| 150. | Modeling and validation of piezoresistive coefficients in Si hole inversion layers                           | A. T. Pham, et al.       | Solid-State Electronics                                     | Volume: 53                | Elsevier                      | 2009      | pp. 1325-<br>1333            | Doi:10.1109/ULIS.2009.4<br>897553         | No |
| 151. | MBE Growth of Ge Quantum Dot Structures in Oxide Windows                                                     | A. Karmous,<br>et al.    | IOP Conf. Series:<br>Materials Science and<br>Engineering 6 |                           |                               | 2009      | 012020                       | doi: 10.1088/1757-<br>899X/6/1/012020     | No |
| 152. | Silicon oxynitride layers fabricated by<br>Plasma Enhanced Chemical Vapor<br>Deposition for CMOS devices     | R. Mroczyński,<br>et al. | ECS Transactions, 25(8)                                     |                           |                               | 2009      |                              |                                           | No |
| 153. | High frequency and noise model of gate-all-<br>around metal-oxide-semiconductor field-<br>effect transistors | B. Nae, et al.           | Journal of Applied<br>Physics                               | Volume: 105<br>Issue: 7   | American Institute of Physics | 2009      | Article<br>Number:<br>074505 | Doi:10.1063/1.3093884                     | No |

| Final Report January 2008 to March 2011 62 / 107 |
|--------------------------------------------------|
|--------------------------------------------------|

NANOSIL

|      |                                                                                                                 |                       |                                                                   |                            |                                |                                   |                             | 2009                         |                                         |    |
|------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------------------|-----------------------------|------------------------------|-----------------------------------------|----|
| 154. | High-frequency compact analytical noise model for double-gate metal-oxide-semiconductor field-effect transistor | A. Lázaro, et<br>al.  | Journal of Applied<br>Physics                                     | Volume: 105,<br>Issue: 3   | American Institute of Physics  |                                   | 2009                        | Article<br>Number:<br>034510 | Doi: 10.1063/1.3077279                  | No |
| 155. | Multiparameter admittance spectroscopy for metal-oxide-semiconductor systems                                    | J.Piscator, et al.    | Journal of Applied<br>Physics                                     | 106                        | American Institute of Physics  |                                   | 2009                        | 054510                       | Doi: 10.1063/1.3213384                  | No |
| 156. | The conductance method in a bottom-up approach aplied on hafnium oxide/silicon interfaces                       | J.Piscator, et al.    | Applied Physics Letter                                            | Volume: 94<br>Issue: 21    |                                |                                   | 2009                        | 213507                       | Doi: 10.1063/1.3138125                  | No |
| 157. | A nonparabolicity model compared to tight-<br>binding: The case of square silicon<br>quantum wires              | A. Esposito, et al.   | Solid-State Electronics                                           | Volume: 53, n<br>o3        | Elsevier                       | Kidlington, UK                    | 2009                        | 376 - 382                    |                                         | No |
| 158. | Quantum transport including nonparabolicity and phonon scattering: application to silicon nanowires             | A. Esposito, et al.   | Journal of<br>Computational<br>Electronics                        | 8, 3                       |                                |                                   | 2009                        | 336-348                      | doi: 10.1007/s10825-009-<br>0276-0      | No |
| 159. | Estimate of Dielectric Density using Spectroscopic Ellipsometry.                                                | W. Davey, et al.      | Microelectronic<br>Engineering,                                   | Volume: 86,<br>issues 7-9  | Elsevier                       |                                   | July-<br>September<br>2009, | pp. 1905-<br>1907            | doi:10.1016/j.mee.2009.0<br>3.027       | No |
| 160. | Rare earth silicate formation – a route towards high-k for the 22 nm node and beyond                            | I.Z. Mitrovic, et al. | Journal of<br>Telecommunications<br>and Information<br>Technology | N°4                        | Listvici                       |                                   | 2009                        | pp. 51-60                    |                                         | No |
| 161. | Performance enhancements in scaled<br>strained SiGe pMOSFETs with<br>HfSiOx/TiSiN gate stacks                   | O Alatise, et al.     | IEEE Trans. on<br>Electron Devices                                | Volume: 56,<br>no. 10      | NXP Semicond.                  | Stockport, UK                     | Oct. 2009                   | pp. 2277-<br>2284,           | 10.1109/TED.2009.2028<br>375            | No |
| 162. | Defect identification in strained Si/SiGe heterolayers for device applications                                  | E Escobedo-v          | Journal of Physics                                                | Volume 42<br>Number 17     | American Institute of Physics  |                                   | 2009                        | pp. 175306                   | doi: 10.1088/0022-<br>3727/42/17/175306 | No |
| 163. | Realization of vertical silicon nanowire networks with an ultra high density by top-down approach               | X.L. Han, et al       | Journal of Nanoscience and Nanotechnology                         | Volume<br>10, Number<br>11 | American Scientific Publishers |                                   | 2010                        | pp. 7423-<br>7427(5)         | Doi:<br>10.1166/jnn.2010.2841           | No |
| 164. | Systematic Study of Schottky Barrier<br>MOSFETs with Dopant Segregation on<br>Thin-Body SOI                     | C. Urban, et al       | Solid-State Electronics                                           | Volume 54,<br>Issue 2      | Elsevier                       |                                   | February<br>2010,           | Pages 185-<br>190            | doi:10.1016/j.sse.2009.1<br>2.017       | No |
| 165. | Ultra thin Ni-silicides with low contact resistance on strained and unstrained silicon                          | L. Knoll et al        | IEEE Electron Device<br>Letters                                   | Volume: 31 ,<br>Issue: 4   | IEEE                           |                                   | 2010                        | Page(s): 350<br>- 352        | Doi:<br>10.1109/LED.2010.20410<br>28    | No |
| 166. | Compact capacitance modeling of a 3-terminal FET at zero drain-source voltage                                   | B. Iñiguez, et al     | Solid-State Electronics                                           | Volume 54,<br>Issue 5      | Elsevier                       |                                   | May 2010                    | Pages 520-<br>523            | doi:10.1016/j.sse.2009.1<br>2.039       | No |
| 167. | Improved analog performance in strained Si MOSFETs using the thickness of the silicon                           | OM Alatise, et        | IEEE Transactions                                                 | Volume: 56,                | The Inst. of Electrical and    | Piscataway, NJ<br>08855-1331, USA |                             | Page(s):<br>3041 - 3048      | Doi:10.1109/TED.2009.2<br>030721        | No |

NANOSIL Final Report January 2008 to March 2011 63 / 107

|      | germanium strain relaxed buffer as a design parameter                                                                                                                             | al                        | on Electron Devices                      | Issue: 12                | Electronics Eng               |           |                                   |                                                 |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|--------------------------|-------------------------------|-----------|-----------------------------------|-------------------------------------------------|----|
| 168. | Reverse graded SiGe/Ge/Si buffers for highcomposition virtual substrates                                                                                                          | V.A. Shah, et al          | Journal of Applied<br>Physics            | 10.1063/1.331<br>1556    | American Institute of Physics |           | Page(s):<br>064304 -<br>064304-11 | Doi : 10.1063/1.3311556                         | No |
| 169. | A Compact Mobility Model for Bulk, Ultra-<br>Thin Body SOI and Double-Gate n-<br>MOSFETs with Different Surface and<br>Channel Orientations. Part I: Fundamental<br>Principles    | L. Silvestri,. et al      | IEEE Trans. on<br>Electron Devices       | Volume: 57,<br>Issue: 7  |                               |           | Page(s):<br>1575 - 1582           | Doi:<br>10.1109/TED.2010.2049<br>211            | No |
| 170. | A Compact Mobility Model for Bulk, Ultra-<br>Thin Body SOI and Double-Gate n-<br>MOSFETs with Different Surface and<br>Channel Orientations. Part II: Ultra-Thin<br>Silicon Films | L. Silvestri, et al       | IEEE Trans. on<br>Electron Devices       | Volume: 57 ,<br>Issue: 7 |                               | 2010      | Page(s):<br>1575 - 1582           | Doi:<br>10.1109/TED.2010.2049<br>211            | No |
| 171. | Determination of Strain Tensors in Layer<br>Systems by Precision Ion Channeling<br>Measurements                                                                                   | H. Trinkaus, et al        | Journal of Applied<br>Physics            | Issue: 12                | American Institute of Physics |           | Page(s):<br>124906 -<br>124906-8  | Doi: 10.1063/1.3415530                          | No |
| 172. | Analytical Modeling of the Gate Tunneling<br>Leakage for the Determination of Adequate<br>High-k Dielectrics in Double-Gate SOI<br>MOSFETs at the 22 nm node                      | G. Darbandy,<br>et al     | Solid-State Electronics                  |                          | Elsevier                      |           |                                   | 10.1109/ISDRS.2009.537<br>8235                  | No |
| 173. | Multiparameter admittance spectroscopy as a diagnostic tool for interface states at oxide/semiconductor interfaces                                                                | B. Raeissi, et al         | IEEE Trans. El. Dev.                     | Issue 7                  |                               | July 2010 | pp 1702 -<br>1705                 | Doi:10.1109/TED.2010.2<br>049064                | No |
| 174. | The role of mobile charge in oxygen plasma enhanced silicon–to–silicon wafer bonding                                                                                              | B. Raeissi, et al         | J. Electrochem. Soc.                     | Volume 13,<br>Issue 6    |                               | Sept 2010 | pp. H179-<br>H181                 | http://dx.doi.org/10.1149/<br>1.3355288         | No |
| 175. | Additive Performance Boosters and<br>Sensitivity to Parameter Fluctuations of<br>Silicon Tunnel FETs                                                                              | K. Boucart, et al         | Nature Nanotechnology                    |                          |                               | 2010      | pp345 - 348                       | Doi:<br>10.1109/ESSDERC.2010<br>.5618218        | No |
| 176. | Asymmetrically strained all-silicon multigate n-Tunnel FETs                                                                                                                       | M.<br>Najmzadeh, et<br>al | Solid-State Electronics                  | Volume 54,<br>Issue 9,   | Elsevier                      | Sept 2010 | Pages 935-<br>941                 | doi:10.1016/j.sse.2010.0<br>4.037               |    |
| 177. | Non-metallic effects in silicided gate MOSFETs                                                                                                                                    | N.Rodriguet et al         | Solid State Electronics                  | Volume 53,<br>Issue. 12  | Elsevier                      |           | pp 1313-<br>1317                  | http://dx.doi.org/10.1016/j<br>.sse.2009.09.016 | No |
| 178. | Extraction of parameter characterising µeff against Eeff curves in strained Si nMOS devices                                                                                       | K.<br>Bennamane et<br>al  | Electronics Letters                      | Volume 44,<br>Issue 20   | IEE                           | 2008      | pp 1219-<br>1220                  | doi:10.1049/el:20080701                         | No |
| 179. | Fabrication and characterisation of strained Si heterojunction bipolar transistors on virtual substrates                                                                          | S. Persson et al          | International Electron<br>Device Meeting |                          |                               | 2008      | pp 735-738                        | doi:10.1109/IEDM.2008.4<br>796800               | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 64 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 180. | Monte Carlo study of apparent magnetoresistance mobility in nanometer scale metal oxide semiconductor field effect transistors                                 | Karim Huet et<br>al        | Journal of Applied<br>Physics                                                | Volume 104, issue 4       | American Institute of Physics |             | 2008 | pp. 044504-<br>1-7 | doi:10.1063/1.2969661                                                   | No |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|---------------------------|-------------------------------|-------------|------|--------------------|-------------------------------------------------------------------------|----|
| 181. | Carrier Mobility in Undoped Triple-Gate<br>FinFET Structures and Limitations of Its<br>Description in Terms of Top and Sidewall<br>Channel Mobilities          | Rudenko T et<br>at         | Electron Devices, IEEE<br>Transactions                                       | Volume: 55,<br>Issue: 12  |                               |             | 2008 | pp. 3532-<br>3541  | doi:10.1109/TED.2008.20<br>06776                                        | No |
| 182. | Experimental and theoretical analysis of hole transport in uniaxially strained pMOSFETs                                                                        | Huet, K. et al             | 38th European Solid-<br>State Device Research<br>Conference, ESSDERC<br>2008 |                           |                               |             | 2008 | pp. 234-237        | doi:10.1109/ESSDERC.2<br>008.4681741                                    | No |
| 183. | A Quasi-Two-Dimensional Compact Drain—<br>Current Model for<br>Double-Gate MOSFETs Including Short-<br>Channel Effects                                         | Lime F. et al              | Electron Devices, IEEE<br>Transactions                                       | Volume: 55,<br>Issue: 6   |                               |             | 2008 | pp. 1441-<br>1448, | doi:10.1109/TED.2008.92<br>1980.                                        | No |
| 184. | Reduced self-heating by strained silicon substrate engineering                                                                                                 | A. O'Neill , et al,        | Applied Surface<br>Science                                                   | Volume 254                | Elsevier                      |             | 2008 | p 6182             | doi:10.1016/j.apsusc.200<br>8.02.172   How to Cite or<br>Link Using DOI | No |
| 185. | Strain sensitivity of gate leakage in strained-SOI nMOSFETs: a benefit for the performance trade-off and a novel way to extract the strain-induced band offset | F. Rochette                | Microelectronic<br>Engineering                                               | Volume 86,<br>Issues: 7-9 | Elsevier                      |             | 2009 | pp. 1897-<br>1900  | doi:10.1016/j.mee.2009.0<br>3.043                                       | No |
| 186. | The growth of small diameter silicon nanowires to nanotrees                                                                                                    | P Gentile, et al.          | Nanotechnology 19                                                            |                           |                               |             | 2008 | 125608             | doi: 10.1088/0957-<br>4484/19/12/125608                                 | No |
| 187. | Monte-Carlo simulation of MOSFETs with band-offsets in the source and drain                                                                                    | M. Braccioli, et al.       | Solid-State Electronics                                                      | Volume: 52                | Elsevier                      |             | 2008 | pp. 506-<br>513    | doi:10.1016/j.sse.2007.1<br>0.038                                       | No |
| 188. | A capacitor-less 1T-DRAM on SOI based on double gate operation.                                                                                                | M. Bawedin,<br>et al.      | IEEE Electron Device<br>Letters                                              | Volume: 29<br>n°7         | IEEE                          |             | 2008 | 795-798            | Doi:<br>10.1109/LED.2008.20006<br>01                                    | No |
| 189. | The Quantization Impact of Accumulated Carriers in Silicide-Gated MOSFETs                                                                                      | N.<br>Rodriguez,<br>et al. | IEEE Electron Device<br>Letters                                              | Volume: 29                | IEEE                          |             | 2008 | p. 628-631         |                                                                         | No |
| 190. | On the Electron Mobility Enhancement in biaxially strained Si MOSFETs                                                                                          | F.Driussi, et al.          | Solid State Electronics                                                      | Volume: 52 issue 4        |                               |             | 2008 | 498–505            | doi:10.1016/j.sse.2007.1                                                | No |
| 191. | High-frequency performance of Schottky Source/Drain Silicon pMOS devices                                                                                       | JP.Raskin,<br>et al.       | IEEE Electronic Device<br>Letters                                            | Volume 29, issue 4        | IEEE                          |             | 2008 | 396-398            | Doi:10.1109/LED.2008.9<br>18250                                         | No |
| 192. | Characterization of ultrathin SOI film and application to short channel MOSFETs                                                                                | X.H. Tang, et al           | Nanotechnology,                                                              | Volume: 19,<br>No. 16     | Institute of Physics          | Bristol, UK | 2008 |                    |                                                                         | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 65 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 193. | Low Schottky barrier height for ErSi2-x /n-Si contacts formed with a Ti cap                                                | N. Reckinger, et al.           | J. Appl. Physics                                                                             | Volume 104,<br>Issue 10, |                               | 2008            | pp. 103523-<br>103523-9 | DOI: 10.1063/1.3010305               | No |
|------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|--------------------------|-------------------------------|-----------------|-------------------------|--------------------------------------|----|
| 194. | Impact of channel doping on Schottky barrier height and investigation on p-SB MOSFETs performance                          | G. Larrieu, et al.             | Materials Science and Engineering B                                                          | Volumes 154-<br>155      | Elsevier                      | 2008            | Pages 159-<br>162       | doi:10.1016/j.mseb.2008.<br>10.014   | No |
| 195. | Amorphous to crystalline transition of Er silicide upon thermal annealing and impact on the Schottky barrier height        | N. Reckinger,<br>et al.        | Applied Physics Letters                                                                      |                          | American Institute of Physics |                 |                         |                                      | No |
| 196. | RF small signal analysis of Schottky-Barrier p-MOSFET                                                                      | R. Valentin, et al.,           | IEEE TED                                                                                     | Volume: 55,<br>no. 5     |                               | May<br>2008     | pp. 1192-<br>1202       |                                      | No |
| 197. | High Frequency Noise Performance of 60 nm gate length FinFETs                                                              | JP. Raskin,<br>et al.          | IEEE TED                                                                                     | Volume: 55,<br>no. 10    |                               | October<br>2008 | pp. 2718-<br>2727       | Doi:<br>10.1109/TED.2008.2003<br>097 | No |
| 198. | Leakage current effects on C-V plots of high-k MOS capacitors                                                              | Y. Lu, S., et al.              | Journal of Vacuum<br>Science & Technology<br>B: Microelectronics and<br>Nanometer Structures | Volume: 27<br>Issue: 1   |                               | 2009            |                         | Doi: 10.1116/1.3025910               | No |
| 199. | Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations                                     | Ran Yan et al.,                | Solid-State Electronics                                                                      | Volume: 52,<br>No. 12    | Elsevier                      | 2008            | pp. 1872-<br>1876       | doi:10.1016/j.sse.2008.0<br>6.061    | No |
| 200. | Conduction mechanisms of silicon oxide/titanium oxide MOS stack structures                                                 | J.C. Tinoco, et al.            | Micro-electronics<br>Reliability                                                             | Volume: 48,<br>No 3      |                               | 2008            | pp. 370-<br>381         |                                      | No |
| 201. | Threshold voltage model for bulk strained-<br>silicon NMOSFETs                                                             | J C Tinoco , et al.            | Semiconductor Science<br>& Technology                                                        | 23                       |                               | 2008            | 035017                  |                                      | No |
| 202. | Interface defects in HfO2, LaSiOx, and Gd2O3 high-k/metal-gate structures on silicon: energy distribution and passivation, | P. K. Hurley,<br>et al.        | J. Electrochem. Soc.                                                                         | 155, G13                 |                               | 2008            |                         |                                      | No |
| 203. | High-k-oxide/silicon interfaces characterized by capacitance frequency spectroscopy                                        | B.Raeissi, et al.              | Solid State Electronics                                                                      | Volume: 52               | Elsevier                      | 2008            | 1274                    | doi:10.1016/j.sse.2008.0<br>4.005    | No |
| 204. | Gd silicate: A High-k Dielectric Compatible with High Temperature Annealing                                                | H.D.B.<br>Gottlob1,, et<br>al. | Journal of Vacuum<br>Science & Technology<br>B                                               | Volume 27 /<br>Issue 1   |                               | 2008            |                         | doi:10.1116/1.3025904 (4 pages)      | No |
| 205. | Deep level transient spectroscopy in quantum dot characterization.                                                         | O. Engström,<br>et al.         | Nanotech.                                                                                    | Lett. 3                  |                               | 2008            | 179                     |                                      | No |
| 206. | Thermal instability of electron traps in InAs/GaAs quantum dot structures                                                  | M. Kaniewska,<br>et al.        | Mater. Sci.: Mater.<br>Electron.                                                             | 19                       |                               | 2008            | SUP1                    |                                      | No |
| 207. | Electrical study of InAs/GaAs quantum dots with two different environments                                                 | M. Kaniewska,                  | Phys. Stat. Sol.(c),                                                                         | 5                        |                               | 2008            | 2926                    | DOI: 10.1002/pssc.20077<br>9269      | No |

|--|

|      |                                                                                                                                                   | et al.                                   |                                                     |                           |                                                   |                                   |               |                     |                                     |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------|---------------------------------------------------|-----------------------------------|---------------|---------------------|-------------------------------------|----|
| 208. | Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures                                            | S. Monaghan,<br>et al.                   | Solid State Electronics                             | Volume 53,<br>Issue 4,    | Elsevier                                          |                                   | 2009          | Pages 438-<br>444   | doi:10.1016/j.sse.2008.0<br>9.018   | No |
| 209. | Si-SiO2 interface band-gap transition – effects on MOS inversion layer                                                                            | S. Markov, et al                         | Physika Status Solidi a                             | Volume: 205, issue 6      |                                                   |                                   | 2008          | pp 1290-<br>1295    | DOI:<br>10.1002/pssa.200778154      | No |
| 210. | Analysis of Self-Heating Effects in Ultra-<br>Thin Body SOI MOSFETs by Device<br>Simulation                                                       | Claudio<br>Fiegna, et al                 | IEEE Trans Electron<br>Dev                          | Volume: 55,<br>No.1       |                                                   |                                   | 2008          | p233-2444           | Doi:10.1109/TED.2007.9<br>11354     | No |
| 211. | Strained Si/SiGe MOS technology:<br>improving gate dielectric integrity                                                                           | SH Olsen, et al.                         | Microelectronics<br>Engineering,                    | Volume 86,<br>Issue 3     | Elsevier B.V.                                     |                                   | 2009          | Pages 218-<br>223   | doi:10.1016/j.mee.2008.0<br>8.001   | No |
| 212. | Nanoscale strain characterisation for ultimate CMOS and beyond                                                                                    | SH Olsen, , et al.                       | Materials Science in<br>Semiconductor<br>Processing | Volume 11,<br>Issues 5-6, |                                                   |                                   | 2008          | Pages 271-<br>278   | doi:10.1016/j.mssp.2009.<br>06.003  | No |
| 213. | Insight into the aggravated lifetime reliability in advanced MOSFETs with strained Si channels on SiGe strain relaxed buffers due to self-heating | R Agaiby, et al.                         | IEEE Transactions on<br>Electron Devices            | Volume: 55<br>Issue: 6    | The Inst. of<br>Electrical and<br>Electronics Eng | Piscataway, NJ<br>08855-1331, USA | 2008          | pages 1568-<br>1573 | Doi:<br>10.1109/TED.2008.9219<br>94 | No |
| 214. | High hole mobility in 65nm strained Ge-<br>pFETs with HfO2 gate dielectric                                                                        | J. Mitard, et al                         | Japanese Journal of<br>Applied Physics              | Accepted Nov 2010,        |                                                   |                                   | 2011<br>April |                     |                                     | No |
| 215. | Investigation of strain engineering in<br>FinFETs comprising experimental analysis<br>and numerical simulations                                   | F. Conzatti, et al                       | IEEE Trans Electron<br>Devices                      |                           |                                                   |                                   | Accepted 2010 |                     |                                     | No |
| 216. | Effect of Ge/Si (001) epilayer thickness on structural quality                                                                                    | V.A. Shah, et al                         | Thin Solid Films                                    |                           |                                                   |                                   | Accepted 2010 |                     |                                     | No |
| 217. | High quality relaxed Ge layers grown directly on a Si (001) substrate                                                                             | V.A. Shah, et al                         | Solid State Electronics                             |                           | Elsevier                                          |                                   | Accepted 2010 |                     |                                     | No |
| 218. | Erbium silicide growth in the presence of residual oxygen                                                                                         | N. Reckinger,<br>et al                   | J. Electrochem. Soc.                                |                           | Electrochemical society                           | US                                | 2011          |                     |                                     | No |
| 219. | CMOS Inverter based on Schottky Source-<br>Drain MOS Technology with Low<br>Temperature Dopant Segregation                                        | G. Larrieu, E.<br>Dubois (ISEN-<br>IEMN) | IEEE Electron Dev.<br>Lett.                         |                           | IEEE                                              |                                   | 2011          |                     |                                     | No |
| 220. | Transport and Interface States in High-k<br>LaSiOx Dielectric                                                                                     | Yu. Gomeniuk ISP NAS of Ukraine, et al   | Microelectronic<br>Engineering<br>INFOS'2011        |                           | Elsevier                                          |                                   | 2011          |                     |                                     | No |
| 221. | Studies of the quality of GdSiO-Si interface                                                                                                      | M. Iwanowicz                             | Microelectronics<br>Reliability                     | 2011 -<br>accepted        | Elsevier                                          |                                   | 2011          |                     |                                     | No |

| NANOSIL | Final Report | January 2008 to March 2011 | 67 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

|      |                                                                                                                       | (WUT, AMO)                  |                                    |                              |                                        |             |                  |     |
|------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|------------------------------|----------------------------------------|-------------|------------------|-----|
| 222. | Improvement of immunity on MeV electron radiation of MOS structures by means of ultra-shallow fluorine implantation   | M. Kalisz<br>(WUT)          | Microelectronics<br>Reliability    | accepted                     | Elsevier                               |             | 2011             | No  |
| 223. | A Simplified Physical DC Model for<br>Undoped UTB SOI and Asymmetric<br>DGMOSFETs with Independent Gate<br>Operation  | F. Lime, et al              | Solid-State Electronics            | accepted                     | Elsevier                               |             |                  | No  |
| 224. | Local strained silicon platform based on dilerential SiGe/Si epitaxy                                                  | A. Karmous,<br>USTUTT       | Journal of Crystal<br>Growth       |                              | Elsevier                               |             | 2011<br>Accepted | No  |
| 225. | Electron states in MOS system                                                                                         | O. Engström<br>Chalmers     | ECS Transaction 2011               |                              |                                        |             | 2011<br>Accepted |     |
| 226. | Computational Comparison of Conductivity and Mobility Models for Silicon Nanowire Devices                             | Martin Frey<br>ETHZ         | Journal of Applied<br>Physics      | 109 (7), April<br>2011       | AMERICAN<br>INSTITUTE OF<br>PHYSICS    | US          | 2011             | No  |
| 227. | Study of interfaces and band offsets in TiN/amorphous LaLuO3 gate stacks'                                             | I.Z. Mitrovic et al.        | Microelectronic<br>Engineering     | April 2011                   | Elsevier B.V.                          |             | 2011             | No  |
| 228. | Investigation of Electron and Hole Charge<br>Trapping in LaLuO3 Stack MOS Capacitor<br>Using the 3-Pulse CV Technique | N. Sedghi<br>LIVUNI, Julich | ECS Transactions                   | April 2011                   | The<br>Electrochemical<br>Society, USA |             | 2011             | No  |
| 229. | Mobility Extraction in sub 10nm Nanowire nMOSFETs with Gadolinium-Silicate as Gate Dielectric                         | M. Schmidt, et al AMO, RWTH |                                    | March 2011                   |                                        | IEEE Xplore | 2011             | Yes |
| 230. | A comparative study of surface-roughness induced variability in silicon nanowire and double-gate FETs                 | INPG/FMNT,<br>IUNET         | IEEE Trans. on<br>Electron Devices | Special Issue on Variability | IEEE                                   | USA         | 2011             | No  |

Final Report

# TEMPLATE A2: LIST OF DISSEMINATION ACTIVITIES FOR PERIOD 3

| NO. | Type of activities <sup>5</sup> | Main leader                                                                 | Title                                                                                           | Title of paper/ presentation                                                                                                    | Date | Place | Type of audience <sup>6</sup>                    | Size of audience | Countries addressed |
|-----|---------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|-------|--------------------------------------------------|------------------|---------------------|
| 1.  | Book                            | GRENOBLE INP/FMNT (Editor),<br>Nanosil consortium (see D5.4 for<br>details) | ISTE-Wiley book (650 pages)                                                                     | Nanoscale CMOS: Innovative Materials,<br>Modeling and Characterization                                                          | 2010 |       | Scientific<br>Community,<br>Industry             |                  | International       |
| 2.  | Book                            | Tyndall, ISP-Kiev, GRENOBLE<br>INP/FMNT, UCL, UGR                           | Springer (450 pages) Doi: 10.1007/978-3-642-151868-1                                            | Semiconductor-On-Insulator Materials for NanoElectronics Applications                                                           | 2011 |       | Scientific<br>Community,<br>Industry             |                  | International       |
| 3.  | Book Chapter                    | D. Leadley et al<br>Warwick                                                 | Book, "Nanoscale CMOS: Innovative<br>Materials, Modeling and<br>Characterization", ISTE – Wiley | Chapter 1: Introduction to Part 1: Novel materials for nanoscale CMOS                                                           | 2010 |       | Scientific<br>Community,<br>Industry             |                  | International       |
| 4.  | Book chapter                    | O. Engstrom<br>Chalmers, LIVUNI, Tyndall, AMO                               | Book, "Nanoscale CMOS: Innovative<br>Materials, Modeling and<br>Characterization", ISTE – Wiley | Chapter 2: Gate Stacks                                                                                                          | 2010 |       | Scientific<br>Community,<br>Industry             |                  | International       |
| 5.  | Book chapter                    | D.R. Leadley, et al<br>Warwick                                              | Book, "Nanoscale CMOS: Innovative<br>Materials, Modeling and<br>Characterization", ISTE – Wiley | Chapter 3: Strained Si and Ge Channels                                                                                          | 2010 |       | Scientific<br>Research<br>Community,<br>Industry |                  | International       |
| 6.  | Book chapter                    | S. Mantl, D; Buca,<br>FZJ                                                   | Book, "Nanoscale CMOS: Innovative<br>Materials, Modeling and<br>Characterization", ISTE – Wiley | Chapter 4: From thin Si/SiGe buffers to SSOI                                                                                    | 2010 |       | Scientific<br>Research<br>Community,<br>Industry |                  | International       |
| 7.  | Book chapter                    | E. Dubois et al,<br>IEMN/ISEN                                               | Book, "Nanoscale CMOS: Innovative Materials, Modeling and Characterization", ISTE – Wiley       | Chapter 5: Intorduction to Schottky-barrier MOS architectures: concept, challenges, material engineering and delvce integration | 2010 |       | Scientific<br>Research<br>Community,<br>Industry |                  | International       |
| 8.  | Book chapter                    | E. Sangiorgi<br>IUNET                                                       | Book, "Nanoscale CMOS: Innovative Materials, Modeling and Characterization", ISTE – Wiley       | Chapter 6: Introduction to Part 2: Advanced modeling and simulation for nano-MOSFETs and beyond-CMOS devices                    | 2010 |       | Scientific<br>Research<br>Community,<br>Industry |                  | International       |
| 9.  | Book chapter                    | B. Majkusiak et al                                                          | Book, "Nanoscale CMOS: Innovative                                                               | Chapter 7: Modeling and simulation                                                                                              | 2010 |       | Scientific                                       |                  | International       |

<sup>&</sup>lt;sup>5</sup> A drop down list allows choosing the dissemination activity: publications, conferences, workshops, web, press releases, flyers, articles published in the popular press, videos, media briefings, presentations, exhibitions, thesis, interviews, films, TV clips, posters, Other.

<sup>&</sup>lt;sup>6</sup> A drop down list allows choosing the type of public: Scientific Community (higher education, Research), Industry, Civil Society, Policy makers, Medias ('multiple choices' is possible.

| NANOSIL | Final Report | January 2008 to March 2011 | 69 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

|     |              | WUT, IUNET, ETZH       | Materials, Modeling and Characterization", | approaches for gate current computation      |      | Research   |               |
|-----|--------------|------------------------|--------------------------------------------|----------------------------------------------|------|------------|---------------|
|     |              |                        | ISTE – Wiley                               | approaches for gate sament computation       |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 10. | Book chapter | M. Vasicek et al.      | Book, "Nanoscale CMOS: Innovative          | Chapter 8: Modeling and simulation           | 2010 | Scientific | International |
|     |              | IUNET                  | Materials, Modeling and Characterization", | approaches for drain current computation     |      | Research   |               |
|     |              |                        | ISTE – Wiley                               | , , , , , , , , , , , , , , , , , , ,        |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 11. | Book chapter | Q. Rafhay et al.       | Book, "Nanoscale CMOS: Innovative          | Chapter 9: Modeling of end of the roadmap    | 2010 | Scientific | International |
|     |              | GRENOBLE INP, IUNET    | Materials, Modeling and Characterization", | nMOSFET with Alternative channel material    |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 12. | Book chapter | A. Martinez et al      | Book, "Nanoscale CMOS: Innovative          | Chapter 10: NEGF for 3D device simulation of | 2010 | Scientific | International |
|     | ·            | GRENOBLE INP, GU       | Materials, Modeling and Characterization", | nanometric inhomogenities                    |      | Research   |               |
|     |              |                        | ISTE – Wiley                               | Ĭ                                            |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 13. | Book chapter | B. Iniguez et al.      | Book, "Nanoscale CMOS: Innovative          | Chapter 11: Compact models for advanced      | 2010 | Scientific | International |
|     | ·            | URV                    | Materials, Modeling and Characterization", | CMOS devices                                 |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 14. | Book chapter | G. lannaccone et al,   | Book, "Nanoscale CMOS: Innovative          | Chapter 12: Beyond CMOS                      | 2010 | Scientific | International |
|     |              | IUNET, GRENOBLE INP    | Materials, Modeling and Characterization", |                                              |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 15. | Book chapter | D. Flandre             | Book, "Nanoscale CMOS: Innovative          | Chapter 13: Introduction to Part 3:          | 2010 | Scientific | International |
|     |              | UCL                    | Materials, Modeling and Characterization", | Nanocharacterization methods                 |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 16. | Book chapter | M. Mouis               | Book, "Nanoscale CMOS: Innovative          | Chapter 14: Accurate determination of        | 2010 | Scientific | International |
|     |              | GRENOBLE INP           | Materials, Modeling and Characterization", | transport parameters in sub-65 nm MOS        |      | Research   |               |
|     |              |                        | ISTE – Wiley                               | transistors                                  |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 17. | Book chapter | P. Hurley et al        | Book, "Nanoscale CMOS: Innovative          | Chapter 15: Characterization of interface    | 2010 | Scientific | International |
|     |              | Tyndall-UCC, Chalmers, | Materials, Modeling and Characterization", | defects                                      |      | Research   |               |
|     |              | GRENOBLE INP           | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 18. | Book chapter | A. O'Neill et al.      | Book, "Nanoscale CMOS: Innovative          | Chapter 16: Strain determination             | 2010 | Scientific | International |
|     |              | UNEW                   | Materials, Modeling and Characterization", |                                              |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 19. | Book chapter | D. Flandre et al.      | Book, "Nanoscale CMOS: Innovative          | Chapter 17: Wide frequency band              | 2010 | Scientific | International |
|     |              | UCL                    | Materials, Modeling and Characterization", | characterization                             |      | Research   |               |
|     |              |                        | ISTE – Wiley                               |                                              |      | Community, |               |
|     |              |                        |                                            |                                              |      | Industry   |               |
| 20. | Book chapter | A. Lecestre et al.     | Semiconductor-On-Insulator                 | Chapter on "Confined and guided vapor-       | 2011 | Scientific | International |
|     |              | IEMN/ISEN, STM         | Materials for NanoElectronics              | liquid-solid catalytic growth of Silicon     |      | Community, |               |
|     |              |                        | Applications, Springer                     | nanoribbons: from nanowires to structured    |      | Industry   |               |

| NANOSIL | Final Report | January 2008 to March 2011 | 70 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

|     |              |                                                   |                                                                                                                | silicon-on-insultor layers                                                                                                                                                                                                                                                       |      |                                      |               |
|-----|--------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------|---------------|
| 21. | Book chapter | JP. Raskin<br>UCL                                 | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "SOI SMOS: A mature and still improving technology for RF applications"                                                                                                                                                                                               | 2011 | Scientific<br>Community,<br>Industry | International |
| 22. | Book chapter | F. Balestra<br>GRENOBLE INP                       | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Silicon-based devices and materials for nanoscale FETs"                                                                                                                                                                                                              | 2011 | Scientific<br>Community,<br>Industry | International |
| 23. | Book chapter | F. Gamiz et al.<br>UGR                            | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Ultrathin n-channel and p-<br>channel SOI MOSFETs"                                                                                                                                                                                                                   | 2011 | Scientific<br>Community,<br>Industry | International |
| 24. | Book chapter | JP. Colinge et al.<br>Tyndall-UCC                 | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Junctionless transistors: physics and properties"                                                                                                                                                                                                                    | 2011 | Scientific<br>Community,<br>Industry | International |
| 25. | Book chapter | A. Afzalian, et al.<br>UCL, Tyndall-UCC           | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Gate modulated resonant tunneling transistor (RT-FET): performance investigation of a steep slope, high on-current device through 3D non-equilibrium green function simulations", chapter in "Semiconductor-On-Insulator Materials for NanoElectronics Applications" | 2011 | Scientific<br>Community,<br>Industry | International |
| 26. | Book chapter | T. Rudenko et al<br>ISP-Kiev, UCL                 | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on " Special features of the back-gate effects in ultra-thin body SOI MOSFETs", chapter in "Semiconductor-On-Insulator Materials for NanoElectronics Applications"                                                                                                       | 2011 | Scientific<br>Community,<br>Industry | International |
| 27. | Book chapter | HN. Nguyen et al<br>UPS                           | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on " Ohmic and Schottky contact<br>SNTFET: transport properties and device<br>performance using semi-classical and<br>quantum particle simulation""                                                                                                                      | 2011 | Scientific<br>Community,<br>Industry | International |
| 28. | Book chapter | M. Pala, GRENOBLE INP                             | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Quantum simulation of Silicon-<br>Nanowire FETs"                                                                                                                                                                                                                     | 2011 | Scientific<br>Community,<br>Industry | International |
| 29. | Book chapter | G. Gibaudo,<br>GRENOBLE INP                       | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Mobility characterization in advanced FD-SOI CMOS devices"                                                                                                                                                                                                           | 2011 | Scientific<br>Community,<br>Industry | International |
| 30. | Book chapter | JP. Raskin et al<br>UCL                           | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on " Sensing and MEMS devices in thin-film SOI MOS technology"                                                                                                                                                                                                           | 2011 | Scientific<br>Community,<br>Industry | International |
| 31. | Book chapter | M. Bawedin et al.<br>GRENOBLE INP, Leti           | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "Floating-body SOI memory: the scaling tournament"                                                                                                                                                                                                                    | 2011 | Scientific<br>Community,<br>Industry | International |
| 32. | Book chapter | W. van den Daele et al<br>GRENOBLE INP, IMEC      | Wiley (S. Luryi et al. eds) "Future Trends<br>in Microelectronics, from Nanophotonics to<br>Sensors and Energy | GeOl as a platform for ultimate devices                                                                                                                                                                                                                                          | 2010 | Scientific<br>Community,<br>Industry | International |
| 33. | Book chapter | S. Cristoloveanu et al.<br>GRENOBLE INP, Leti, ST | Semiconductor-On-Insulator<br>Materials for NanoElectronics<br>Applications, Springer                          | Chapter on "A selection of SOI puzzles and tentative answers"                                                                                                                                                                                                                    | 2011 | Scientific<br>Community,<br>Industry | International |

| NANOSIL | Final Report | January 2008 to March 2011 | 71 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 34. | Book chapter | GRENOBLE INP/FMNT                                                | Wiley (S. Luryi et al. eds)                                     | Silicon-based devices and materials for<br>nanoscale CMOS and beyond-CMO, chapter<br>in "Future Trends in Microelectronics, from<br>Nanophotonics to Sensors and Energy" | 2010                |                      | Scientific<br>Community,<br>Industry                   |    | International              |
|-----|--------------|------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------------------|----|----------------------------|
| 35. | Publication  | E. Kasper, USTUTT                                                | Horizons in World Physics. Volume 273 (ISBN: 978-1-61728-995-8) | Positioning Ge-Dots on Si for Device<br>Applications/Book chapter /pp. 171-185                                                                                           | 2010                |                      | Scientific<br>Community,<br>Industry                   |    | International              |
| 36. | Thesis       | N. Reckinger<br>UCL, IEMN, FZ Jülich, CNRS/LPN                   |                                                                 | Fabrication and characterization of rare-earth silicide thin films                                                                                                       | 11 February<br>2011 | Louvain-<br>la-Neuve | Scientific<br>Community                                | 40 | Belgium                    |
| 37. | PhD Thesis   | B. Raeissi<br>Chalmers                                           |                                                                 | Charge carrier traffic at interfaces in nanoelectronic structures, ISSN 1652-0769, 2010                                                                                  | 2010                |                      | Scientific<br>Community,<br>Industry                   |    | Worldwide                  |
| 38. | Thesis       | ETHZ                                                             |                                                                 | Scattering in Nanoscale Devices                                                                                                                                          | 2010                | Zurich               | Scientific<br>Community,<br>Industry                   |    | International              |
| 39. | PhD Thesis   | J. Piscator, Chalmers                                            | ISBN 978-91-7385-281-4                                          | Influence of electron charge states in nanoelectronic building blocks                                                                                                    | 2009                |                      | Scientific<br>Community,<br>Industry                   |    | Internationa               |
| 40. | Thesis       | ETHZ                                                             |                                                                 | Band Structure Effects and Quantum<br>Transport                                                                                                                          | 2010                | Zurich               | Scientific<br>Community,<br>Industry                   |    | International              |
| 41. | Web site     | -Sinano Institute<br>-Grenoble INP<br>-UCL                       |                                                                 | Nanosil Project                                                                                                                                                          |                     |                      |                                                        |    | All                        |
| 42. | Film         | -Sinano Institute<br>-Grenoble INP<br>-KTH<br>-IUNET, UCL        |                                                                 | Sinano Institute                                                                                                                                                         |                     |                      |                                                        |    | All (film on the web site) |
| 43. | Poster       | -UCL -Sinano Institute -Grenoble INP                             |                                                                 | Nanosil 2008                                                                                                                                                             |                     |                      |                                                        |    | All                        |
| 44. | Worskhop     | GRENOBLE INP/FMNT, NCSR                                          | Euro Nano Day                                                   | Invited, European Nanoelectronics: the Initiatives and Networks of the Academic Community                                                                                | May 2010            | Grenoble,<br>France  | Scientific<br>Community,<br>Industry, Policy<br>makers |    | International              |
| 45. | Workshop     | GRENOBLE INP/FMNT                                                | Minatec Crossroads                                              | Invited, European Research Roadmap for Nanoelectronics                                                                                                                   | June 2010           | Grenoble,<br>France  | Scientific<br>Community,<br>Industry, Policy<br>makers |    | International              |
| 46. | Workshop     | INPG/FMNT, Warwick, AMO<br>Gmbh, RWTH Aachen, KTH,<br>IUNET, UCL | INC6                                                            | NANOSIL FP7 European Network of Excellence                                                                                                                               | May 2010            | Grenoble,<br>France  | Scientific<br>Community,<br>Industry, Policy<br>makers |    | International              |
| 47. | Workshop     | E. Kasper, USTUTT                                                | 5th International WorkShop on New                               | High frequency behaviour of Ge pin junctions                                                                                                                             | 29-30               | Sendai,              | Scientific                                             |    | International              |

| That Report Sundary 2000 to March 2011 /2/10/ | NANOSIL | Final Report | January 2008 to March 2011 | 72 / 107 |
|-----------------------------------------------|---------|--------------|----------------------------|----------|
|-----------------------------------------------|---------|--------------|----------------------------|----------|

|     |                 |                                   | Group IV Semiconductor<br>Nanoelectronics                                                                   | / Presentation / Digest of Papers (2010)1-3.                                                         | January<br>2010         | Japan                          | Community,<br>Industry               |             |               |
|-----|-----------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|--------------------------------------|-------------|---------------|
| 48. | Workshop        | E. Kasper, USTUTT                 | NANOSIL-Workshop<br>Beyond-CMOS                                                                             | Quantum Structures beyond CMOS /<br>Presentation                                                     | 23 February<br>2011     | Aachen,<br>Germany             | Scientific<br>Community,<br>Industry |             | International |
| 49. | Workshop        | N. Sedghi et al<br>LIVUNI, Julich | Wodim 2010                                                                                                  | CV Measurements on LaLuO <sub>3</sub> Stack MOS<br>Capacitor Using a New 3-Pulse Technique           | 28-30 June<br>2010      | Bratislava,<br>Slovakia        | Scientific<br>Community,<br>Industry | 150         | worldwide     |
| 50. | Tutorial Course | B. Iñiguez                        | ESSDERC                                                                                                     | Compact Thin-Film SOI MOSFET Modelling                                                               | 2010                    | Sevilla<br>(Spain)             | Scientific<br>Community,<br>Industry |             | International |
| 51. | Tutorial Course | B. Iñiguez                        | TCCM                                                                                                        | Compact Small-Signal FET Modelling                                                                   | 2010                    | Tarragona<br>(Spain)           | Scientific<br>Community,<br>Industry |             | International |
| 52. | Invited talk    | KTH                               | 27 <sup>th</sup> International Conference on<br>Microelectronics (MIEL)                                     | Nanoscaling of MOSFETs and<br>Implementation of Schottky Barrier S/D<br>contacts                     | 16-19 May<br>2010       | NIS,<br>Serbia                 | Scientific<br>Community,<br>Industry |             | International |
| 53. | Invited talk    | KTH                               | 18 <sup>th</sup> International Conference on<br>Advanced Semiconductor Devices<br>and Microssystems (ASDAM) | Nanoscaled SiGe based MOSFETs                                                                        | 2010                    | Smolenice<br>, Slovakia        | Scientific<br>Community,<br>Industry |             | International |
| 54. | Invited talk    | KTH                               | 10th IEEE International Conference<br>on Solid-State and Integrated Circuit<br>Technology                   | Integration of metallic source/drain (MSD) contacts in nanoscaled CMOS technology                    | 2010                    | Shanghai                       | Scientific<br>Community,<br>Industry |             | International |
| 55. | Invited lecture | FZJ/ Buca                         | Seminar Invitation                                                                                          | Invited : From Strained Si to strained Si on Insulator                                               | 08.Nov.<br>2010         | Shanghai<br>China              | Scientific<br>Community,<br>Industry | 20          | International |
| 56. | Invited lecture | FZJ/ Mantl                        | Conference                                                                                                  | High mobility Si-Ge channel and high-k materials for NanoMOSFETs                                     | 24-May 2010             | Stockholm<br>/ Sweden          | Scientific<br>Community,<br>Industry | 100         | International |
| 57. | Invited lecture | FZJ/ Mantl                        | Nanosil Workshop                                                                                            |                                                                                                      | 13.09.<br>2010          | Seville,<br>Spain              | Scientific<br>Community,<br>Industry | 50          | International |
| 58. | Invited lecture | R. Mroczyński                     | 12 <sup>th</sup> Polish Seminar "Ion techniques"                                                            | Plasma techniques applications in the technology of non-volatile semiconductor memory (NVSM) devices | 2-5 March<br>2011       | Szklarska<br>Poręba,<br>Poland | Scientific<br>Community,<br>Industry | approx. 100 | PL            |
| 59. | Invited lecture | R. Mroczyński                     | XII Warsaw Festival of Science                                                                              | How the integrated circuit is made?                                                                  | 18<br>September<br>2010 | Warsaw                         | Civil Society                        | approx. 20  | PL            |
| 60. | Invited lecture | FZJ/ Mantl                        | International Symposium on Integrated Functionalities                                                       | Ternary high-k oxides for nanoscale logic devices                                                    | 13.06.<br>2010          | San Juan,<br>Puerto<br>Rico    | Scientific<br>Community,<br>Industry | 100         | International |
| 61. | Conference      | GRENOBLE INP/FMNT                 | French-Ukrainian symposium and SemOI conference                                                             | INVITED, Elastic and inelastic scattering in SiNWs                                                   | October<br>2010         | Kiev,<br>Ukraine               | Scientific<br>Community              |             | International |
| 62. | Conference      | GRENOBLE INP/FMNT                 | 6th International SemOl Conference & 1st Ukrainian-French Seminar on SOI                                    | Invited, Silicon-based devices and materials for nanoscale FETs                                      | October<br>2010         | Kiev,<br>Ukrainia              | Scientific<br>Community              |             | International |

|  | NANOSIL | Final Report | January 2008 to March 2011 | 73 / 107 |
|--|---------|--------------|----------------------------|----------|
|--|---------|--------------|----------------------------|----------|

| 63. | Conference | GRENOBLE INP/FMNT                     | 4th International Conference on Micro-Nanoelectronics,                                                            | Invited, The Sinano Institute: European Networks and Projects in the fields of More                                                          | December<br>2010         | Athens,<br>Greece    | Scientific<br>Community              |                  | International |
|-----|------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------|------------------|---------------|
|     |            |                                       | Nanotechnologies & MEMs                                                                                           | Moore, More than Moore and Beyond-CMOS                                                                                                       |                          |                      |                                      |                  |               |
| 64. | Conference | G. lannaccone (IUNET)                 | European Conference on<br>Nanotechnologies                                                                        | Graphene as a material for nanoelectronics (invited - ab #1198 (INVITED)                                                                     | 26 April<br>2010         | Vancouver            | Scientific<br>Community,<br>Industry | 100              | World         |
| 65. | Conference | G.lannaccone (IUNET)                  | SISPAD                                                                                                            | Transport and noise properties of graphene-<br>based transistors revealed through atomistic<br>modelling, (INVITED)                          | 6 September<br>2010      | Bologna              | Scientific<br>Community,<br>Industry | 100              | World         |
| 66. | Conference | T. Rudenko et al.<br>ISP-Kiev, UCL    | SemOl conference                                                                                                  | Invited: Special Features of back-gate the back gate effect in ultra-thin body SOI MOSFETs                                                   | Oct 25-28,<br>2010       | Kiev,<br>Ukraine     | Scientific<br>Community              | 60               | worldwide     |
| 67. | Conference | V. Kilchytska et al. UCL              | SemOI conference                                                                                                  | Invited: Effects of high–energy neutrons on advanced SOI MOSFETs                                                                             | Oct 25-28,<br>2010       | Kiev,<br>Ukraine     | Scientific<br>Community              | 60               | worldwide     |
| 68. | Conference | Afzalian et al.<br>UCL, Tyndall       | SemOl conference                                                                                                  | Invited: Barrier Resonant Tunneling Transistor: Performance investigation of a Steep Slope, High On-Current device (invited)                 | Oct 25-28,<br>2010       | Kiev,<br>Ukraine     | Scientific<br>Community              | 60               | worldwide     |
| 69. | Conference | P. Dollfus,<br>UPS                    | 1st Ukrainian-French Seminar on SOI materials, devices and cicuits                                                | Invited: Ohmic and Schottky contact CNTFET: Transport properties and device performance using semi-classical and quantum particle simulation | 24-28<br>October<br>2010 | Kiev,<br>Ukrainia    | Scientific<br>Community,<br>Industry | 50               | International |
| 70. | Conference | P. Dollfus,<br>UPS                    | 14th International Workshop on<br>Computational Electronics (IWCE<br>2010)                                        | Invited: Quantum transport of Dirac fermions in graphene nanostructures, Proc.: p.39-44                                                      | 27-29<br>October<br>2010 | Pisa, Italy          | Scientific<br>Community,<br>Industry | 80               | International |
| 71. | Conference | A. G. Nassiopoulou, IMEL              | International Conference on Nanomaterials (ICN 2010)                                                              | Invited talk: "Nanostructures on Si by<br>Electrochemistry and their Applications"                                                           | 27-29 April<br>2010      | Kottayam,<br>India   | Scientific<br>Community,<br>Industry | 250 people       | International |
| 72. | Conference | A. G. Nassiopoulou, IMEL              | 7th International Conference on<br>Porous Semiconductors Science and<br>Technology – PSST 2010                    | Tutorial: "Porous Si for Electronics and Sensors"                                                                                            | 14-19 March<br>2010      | Valencia,<br>Spain   | Scientific<br>Community,<br>Industry | 220 people       | International |
| 73. | Conference | A. G. Nassiopoulou, IMEL              | VCIAN Conference on Interactions<br>Among Nanostructures 2010                                                     | Invited talk: "Photoluminescence from silicon nanocrystal ensembles: effect of exciton migration and role of surface vibration modes"        | 21-25 June<br>2010       | Santorini,<br>Greece | Scientific<br>Community,<br>Industry | 80 people        | International |
| 74. | Conference | A. G. Nassiopoulou, F. Balestra, IMEL | Sixth International Nanotechnology<br>Conference on Communication and<br>Cooperation                              | Invited talk: "European Nanoelectronics: The Initiatives and Networks of the Academic Community"                                             | 17-20 May<br>2010        | Grenoble,<br>France  | Scientific<br>Community,<br>Industry | 80 people        | International |
| 75. | Conference | JP Colinge, Tyndall                   | 6th International SemOI Workshop on<br>Nanoscaled Semiconductor-on-<br>Insulator Materials, Sensors an<br>Devices | Junctionless transistors: physics and properties -INVITED                                                                                    | Nov. 2010                | Ukraine              | Scientific<br>Community,<br>Industry | 100              | All           |
| 76. | Conference | O. Engström<br>Chalmers               | 219 ECS Meeting                                                                                                   | Invited: Electron states in MOS system (to be presented)                                                                                     | May 1 – 6,<br>2011       | Montreal             | Scientific<br>Community,<br>Industry | Estimated 200    | Worldwide     |
| 77. | Conference | O. Engström<br>Chalmers/ITE           | INFOS 2011                                                                                                        | Invited:Future high-k gate stacks: Report from a tour in the periodic system (Tutorial to be                                                 | June 21 –<br>23, 2011    | Grenoble             | Scientific Community,                | Estimated<br>100 | Worldwide     |

| NANOSIL Final Report January 2008 to March 2011 74 / 107 |
|----------------------------------------------------------|
|----------------------------------------------------------|

|     |            |                                            |                                                                                 | given)                                                                                                                                                      |                             |                        | Industry                             |     |               |
|-----|------------|--------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--------------------------------------|-----|---------------|
| 78. | Conference | O, Engstrom<br>Chalmers                    | 218 ECS Meeting,                                                                | Invited: Multiparameter Admittance<br>Sepctroscopy                                                                                                          | Oct. 10 – 15,<br>2010       | Las Vegas              | Scientific<br>Community,<br>Industry | 150 | Worldwide     |
| 79. | Conference | INPG/FMNT                                  | IWCE                                                                            | Influence of Ionized Impurities in Silicon Nanowire MOS Transistors, pp. 137                                                                                | May 2009                    | Beijing,<br>China      | Scientific<br>Community              |     | International |
| 80. | Conference | INPG/FMNT, IMEC                            | ESSDERC'2010                                                                    | Experimental Analysis of Surface Roughness<br>Scattering in FinFET devices, Proc. pp 305-<br>308                                                            | 13-17<br>September<br>2010, | Sevilla,<br>Spain      | Scientific<br>Community              |     | International |
| 81. | Conference | L. Donetti, et al<br>Granada, Warwick, KTH | ULIS 2011                                                                       | On the effective mass of holes in inversion layers                                                                                                          | Mar 14-16,<br>2011          | Cork,<br>Ireland       | Scientific<br>Community,<br>Industry |     | International |
| 82. | Conference | E. Simoen, et al<br>Warwick, IMEC          | 10th Int. Conf. on Solid-State and Integrated Circuit Technology (IC-SICT 2010) | Low-frequency noise in strained and relaxed Ge pMOSFETs, p891                                                                                               | Nov 1-4,<br>(2010)          | Shanghai,<br>China     | Scientific<br>Community,<br>Industry |     | International |
| 83. | Conference | J. Mitard, et al Warwick, IMEC             | 2010 Int. Conf. on Solid State<br>Devices and Materials (SSDM 2010)             | High Hole-Mobility 65nm Biaxially-Strained Ge-pFETs: Fabrication, Analysis and Optimization, p. C-9-2                                                       | 22-24 Sept<br>(2010)        | Tokyo,<br>Japan        | Scientific<br>Community,<br>Industry |     | International |
| 84. | Conference | M. Myronov, et al Warwick,                 | 14th International Conference on Vapor Growth and Epitaxy (ICVGE-14)            | Monolayer thickness control during epitaxial growth of high Ge content strained Ge/SiGe multilayers by RP-CVD                                               | August 8-13,<br>2010        | Beijing,<br>China      | Scientific<br>Community,<br>Industry |     | International |
| 85. | Conference | Van Huy Nguyen, et al<br>Warwick,          | UK Semiconductors,                                                              | Defect Evaluation in Ge and Si <sub>1-x</sub> Ge <sub>x</sub> Epitaxial Layers using an Iodine-Based Selective Etchant                                      | July 7-8<br>(2010)          | Sheffield,<br>UK       | Scientific<br>Community,<br>Industry |     | UK            |
| 86. | Conference | A. Dobbie, et al<br>Warwick,               | UK Semiconductors,                                                              | Thermal Stability of Strained Ge Layers<br>Grown on Reverse-Graded Si <sub>0.2</sub> Ge <sub>0.8</sub> Relaxed<br>Buffers by RP-CVD                         | July 7-8<br>(2010)          | Sheffield,<br>UK       | Scientific<br>Community,<br>Industry |     | UK            |
| 87. | Conference | V.A. Shah et al. Warwick,                  | UK Semiconductors,                                                              | Thickness studies of high quality Ge layers on Si (001) substrates.                                                                                         | July 7-8<br>(2010)          | Sheffield,<br>UK       | Scientific<br>Community,<br>Industry |     | UK            |
| 88. | Conference | Xue-Chao Liu, et al<br>Warwick,            | UK Semiconductors,                                                              | Growth and characterization of Ge/Si <sub>0.4</sub> Ge <sub>0.6</sub> multiple quantum wells                                                                | July 7-8<br>(2010)          | Sheffield,<br>UK       | Scientific<br>Community,<br>Industry |     | UK            |
| 89. | Conference | A. Dobbie, et al<br>Warwick,               | E-MRS 2010 Spring Meeting                                                       | Relaxation of Strained Germanium Layers<br>Grown on Si <sub>0.2</sub> Ge <sub>0.8</sub> Relaxed Buffers by RP-<br>CVD with in-situ H <sub>2</sub> Annealing | June 7-11,<br>2010          | Strasbour<br>g, France | Scientific<br>Community,<br>Industry |     | International |
| 90. | Conference | M. Myronov, et al. Warwick,                | E-MRS 2010 Spring Meeting                                                       | Epitaxial growth of Ge layers by RP-CVD using Digermane precursor                                                                                           | June 7-11,<br>2010          | Strasbour<br>g, France | Scientific<br>Community,<br>Industry |     | International |
| 91. | Conference | M. Myronov et al.<br>Warwick,              | E-MRS 2010 Spring Meeting                                                       | Highly strained Si epilayers grown on SiGe/Si(100) virtual substrates by RP-CVD                                                                             | June 7-11,<br>2010          | Strasbour<br>g, France | Scientific<br>Community,<br>Industry |     | International |
| 92. | Conference | V.A. Shah,                                 | ISTDM 2010                                                                      | High quality relaxed Ge layers grown directly                                                                                                               | 24-26 May                   | Stockholm              | Scientific                           |     | International |

| NANOSIL | Final Report | January 2008 to March 2011 | 75 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

|      |            | Warwick,                                   |                                                        | on a Si (001) substrate.                                                                                                                                                    | 2010                           | , Sweden                 | Community,<br>Industry               |                                 |               |
|------|------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|--------------------------------------|---------------------------------|---------------|
| 93.  | Conference | Xue-Chao Liu et al Warwick,                | ISTDM 2010                                             | Non-destructive thickness characterization of Si and Ge based heterostructure by x-ray diffraction and reflectivity                                                         | 24-26 May<br>2010              | Stockholm<br>, Sweden    | Scientific<br>Community,<br>Industry |                                 | International |
| 94.  | Conference | A. Dobbie et al<br>Warwick,                | MRS Spring Meeting                                     | Investigation of the Thermal Stability of<br>Strained Ge Layers by Reduced-Pressure<br>Chemical Vapour Deposition on Relaxed<br>Si <sub>0.2</sub> Ge <sub>0.8</sub> Buffers | April 5-9<br>2010              | San<br>Francisco,<br>USA | Scientific<br>Community,<br>Industry |                                 | International |
| 95.  | Conference | S.M.Thomas, et al<br>Warwick, Glasgow, NXP | ULIS 2010                                              | Low temperature effective mobility measurements and modelling of high-k gated Si n-MOS and p-MOS devices                                                                    | 17-19 March<br>2010            | Glasgow,<br>UK           | Scientific<br>Community,<br>Industry |                                 | International |
| 96.  | Conference | G. lannaccone IUNET                        | International Workshop on<br>Computational Electronics | A multi-scale approach for performance assessment of hydrogenated graphene Field-Effect Transistors                                                                         | 28 October<br>2010             | Pisa                     | Scientific<br>Community,<br>Industry | 150                             | World         |
| 97.  | Conference | A. Betti<br>IUNET                          | International Workshop on Computational Electronics    | Enhanced shot noise in carbon nanotube FETs due to electron-hole interaction                                                                                                | 28 october<br>2010             | Pisa                     | Scientific<br>Community,<br>Industry | 150                             | World         |
| 98.  | Conference | V.Bonfiglio<br>IUNET                       | International Workshop on<br>Computational Electronics | Evaluation of threshold voltage dispersion in 45 nm CMOS technology with TCAD-based sensitivity analysis                                                                    | 27 october<br>2010             | Pisa                     | Scientific<br>Community,<br>Industry | 150                             | World         |
| 99.  | Conference | A. Betti<br>IUNET                          | IEDM 2010                                              | Full band assessment of phonon-limited mobility in Graphene NanoRibbons,                                                                                                    | 8 december<br>2010             | San<br>Francisco         | Scientific<br>Community,<br>Industry | 100<br>(session) -<br>1200 Conf | World         |
| 100. | Conference | Afzalian et al.<br>UCL                     | ESSDERC                                                | Breaching the kT/Q Limit with Dopant<br>Segregated Schottky Barrier Resonant<br>Tunneling MOSFETs: a Computationnal<br>Study                                                | Sept. 13-17<br>2010            | Sevilla,<br>Spain        | Scientific<br>Community              | 600                             | worldwide     |
| 101. | Conference | Afzalian et al. UCL, Tyndall               | EUROSOI Conference                                     | Variable Barrier Resonant Tunneling<br>Transistor: A New Path Towards Steep Slope<br>and High On-Current?                                                                   | 25-27<br>January,<br>2010      | Grenoble,<br>France      | Scientific<br>Community              | 150                             | worldwide     |
| 102. | Conference | Vikram Passi et al<br>UCL, IEMN, LITEN-CEA | Electrochemical Society Conference - 2011              | Functionalization of Silicon Nanowires for Specific Sensing                                                                                                                 | 1-May-2011<br>- 5-May-<br>2011 | Montreal,<br>Canada      | Scientific<br>Community              |                                 | worldwide     |
| 103. | Conference | V. Kilchytska et al.<br>UCL, IMEC          | EuroSOI 2010                                           | Gate-edge charges related effects and performance degradation in advanced multiple-gate MOSFETs                                                                             | January2010                    | Grenoble,<br>France      | Scientific<br>Community              | 150                             | Worldwide     |
| 104. | Conference | M.K.Md Arshad et al.<br>UCL, Leti          | ULIS 2010                                              | Improved DIBL in Ultra Thin Body SOI<br>MOSFETs with Ultra Thin Buried Oxide and<br>Inverted Substrate                                                                      | March 2010                     | Glasgow,<br>UK           | Scientific<br>Community              | 150                             | Worldwide     |
| 105. | Conference | V. Kilchytska et al.<br>UCL, IMEC          | ESREF 2010                                             | High-energy neutrons effect on strained and non-strained SOI MuGFETs and planar MOSFETs                                                                                     | October<br>2010                | Gaeta,<br>Italy          | Scientific<br>Community              | 600                             | Worldwide     |
| 106. | Conference | J. Conde at al. UCL,Cinestav-Mexico        | MIEL 2010                                              | 3D Simulation of Triple-Gate MOSFETs                                                                                                                                        | May 2010                       | Nis,<br>Serbia           | Scientific<br>Community              |                                 | Worldwide     |

| Final Report | January 2008 to March 2011 | 76 / 107 |
|--------------|----------------------------|----------|
|--------------|----------------------------|----------|

NANOSIL

|      |            | -                                                                        |                                                                                                                     |                                                                                                                                                 |                          | 1                     |                                      |          |               |
|------|------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------------------|----------|---------------|
| 107. | Conference | I. Garduno et al, UCL, Cinestav-<br>Mexico                               | MIEL 2010                                                                                                           | Modeling of main leakage currents and their contribution to channel current in Fin-FETs                                                         | May 2010                 | Nis,<br>Serbia        | Scientific<br>Community              |          | Worldwide     |
| 108. | Conference | V. Kilchytska et al.<br>UCL, Leti, UNEW                                  | EuroSOI 2011                                                                                                        | Ultra-thin body and BOX SOI Analog Figures of Merit                                                                                             | January2011              | Granada,<br>Spain     | Scientific<br>Community              | 150      | Worldwide     |
| 109. | Conference | T. Rudenko et al.<br>UCL, ISP-Kiev                                       | EuroSOI 2011                                                                                                        | Impact of mobility variation on threshold voltage extraction by transconductance change and gm/ld methods in advanced SOI MOSFETs               | January2011              | Granada,<br>Spain     | Scientific<br>Community              | 150      | Worldwide     |
| 110. | Conference | V. Kilchytska et al.<br>UCL,Leti                                         | ULIS 2011                                                                                                           | High-temperature perspectives of UTB SOI MOSFETs                                                                                                | March 2011               | Cork,<br>Ireland      | Scientific<br>Community              | 100      | Worldwide     |
| 111. | Conference | T. Rudenko et al.<br>UCL, ISP-Kiev                                       | ULIS 2011                                                                                                           | Influence of Drain Voltage on MOSFET Threshold Voltage Determination by Transconductance Change and gm/ld Methods                               | March 2011               | Cork,<br>Ireland      | Scientific<br>Community              | 100      | Worldwide     |
| 112. | Conference | S. Makoveev et al.<br>UNEW, UCL, Leti                                    | ULIS 2011                                                                                                           | Self-Heating and Substrate Effects in Ultra-<br>Thin Body Ultra-Thin BOX Devices                                                                | January2011              | Cork,<br>Ireland      | Scientific<br>Community              | 100      | Worldwide     |
| 113. | Conference | V. Passi et al.<br>(UCL,ISEN-IEMN)                                       | Micro Electro Mechanical Systems<br>Conf., MEMS'2010                                                                | Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires'                                      | 2010                     | Hong-<br>Kong         | Scientific<br>Community,<br>Industry | 1000     | International |
| 114. | Conference | X.L. Han et al.<br>(ISEN-IEMN)                                           | European Material Research Society<br>Spring Meeting                                                                | Fabrication and electrical characterization of dense vertical Si nanowires arrays                                                               | June 2010                | Strasbour<br>g France | Scientific<br>Community,<br>Industry | 500      | International |
| 115. | Conference | X.L. Han<br>(ISEN-IEMN)                                                  | 36th International Conference on<br>Micro & Nano Engineering<br>(MNE2010)                                           | Realization of ultra dense arrays of vertical silicon NWs with defect free surface and perfect anisotropy using a top-down approach             | 19-22 Sept<br>2010       | Genoa<br>Italy        | Scientific<br>Community,<br>Industry | 250      | International |
| 116. | Conference | F.M. Bufler,<br>Synopsys, ETHZ, UPS, IUNET                               | 14th International Workshop on<br>Computational Electronics (IWCE<br>2010)                                          | Comparison of semiclassical transport formulations including quantum corrections for advanced devices with high-k gate stacks, Proc.: p.319-322 | 27-29<br>October<br>2010 | Pisa, Italy           | Scientific<br>Community,<br>Industry | 80       | International |
| 117. | Conference | V. Talbo,<br>UPS                                                         | 14th International Workshop on<br>Computational Electronics (IWCE<br>2010)                                          | Fully self-consistent simulation of silicon nanocrystal-based single-electron transistors, Proc.: p. 151-154                                    | 27-29<br>October<br>2010 | Pisa, Italy           | Scientific<br>Community,<br>Industry | 80       | International |
| 118. | Conference | V. Hung Nguyen, UPS                                                      | 15th International Conference on<br>Simulation of Semiconductor<br>Processes and Devices (SISPAD<br>2010), Proc. p. | Quantum transport of Dirac fermions in graphene field effect transistors, Proc.: p. 9-12                                                        | 6-8<br>September<br>2010 | Bologna,<br>Italy     | Scientific<br>Community,<br>Industry | 80       | International |
| 119. | Conference | M. Schmidt, H.D.B. Gottlob, J.<br>Bolten, T. Wahlbrink, H. Kurz /<br>AMO | Ultimate Integration on Silicon (ULIS)                                                                              | Mobility Extraction in sub 10nm Nanowire nMOSFETs with Gadolinium-Silicate as Gate Dielectric                                                   | 16 March<br>2011         | Cork,<br>Ireland      | Scientific<br>Community,<br>Industry | about 55 | International |
| 120. | Conference | A. Karmous, USTUTT                                                       | Ultimate Integration on Si ULIS2011                                                                                 | Ge Quantum Dot Schottky diode operated in a 89GHz Rectenna / Poster / ULIS2011 Proc.                                                            | 14-16<br>March 2011      | Cork,<br>Ireland      | Scientific<br>Community,             |          | International |

| Final Report January 2008 to March 2011 | port | January 2008 to March 2011 | 77 / 107 |
|-----------------------------------------|------|----------------------------|----------|
|-----------------------------------------|------|----------------------------|----------|

NANOSIL

|      |            |                                             |                                                                                                 | pp. 74-76                                                                                                                           |                          |                             | Industry                             |            |               |
|------|------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|--------------------------------------|------------|---------------|
| 121. | Conference | H. Xu,<br>USTUTT                            | The Eleventh Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF 2011 | Integrated W-Band RECTENNA (Rectifying Antenna) with Ge Quantum Dot Schottky Diode/ Presentation                                    | 17-19<br>January<br>2011 | Phoenix,<br>Arizona,<br>USA | Scientific<br>Community,<br>Industry |            | International |
| 122. | Conference | Turchanikov, V., et al. IMEL, ISP-<br>Kiev  | 27th International Conference on<br>Microelectronics, MIEL 2010 -<br>Proceedings                | "Comparative studies of single- and double-<br>nanocrystal layer NVM structures: Charge<br>accumulation and retention", pp. 103-104 | 2010                     | Nis,<br>Serbia              | Scientific<br>Community,<br>Industry | 150 people | International |
| 123. | Conference | S. Gardelis and A. G.<br>Nassiopoulou, IMEL | 7th International Conference on Porous Semiconductors Science and Technology – PSST 2010        | Colleration of light emission properties with exciton migration in silicon nanocrystal ensembles                                    | 14-19 March<br>2010      | Valencia,<br>Spain          | Scientific<br>Community,<br>Industry | 220 people | International |
| 124. | Conference | JP Colinge, Tyndall                         | EUROSOI Conference                                                                              | Substrate bias effects in MuGFETs                                                                                                   | Jan. 2011                | Grenoble                    | Scientific<br>Community,<br>Industry | 100        | All           |
| 125. | Conference | JP Colinge, Tyndall                         | EUROSOI Conference                                                                              | 3D Simulation of RTS Amplitude in<br>Accumulation-Mode and Inversion-Mode<br>Trigate SOI MOSFETs                                    | Jan. 2011                | Grenoble                    | Scientific<br>Community,<br>Industry | 100        | All           |
| 126. | Conference | JP Colinge, Tyndall                         | EUROSOI Conference                                                                              | Comparison of Breakdown Voltage in Bulk and SOI FinFETs                                                                             | Jan. 2010                | Grenoble                    | Scientific<br>Community,<br>Industry | 100        | All           |
| 127. | Conference | JP Colinge, Tyndall                         | WOLTE 9 - Ninth International<br>Workshop on Low Temperature<br>Electronics                     | Low Temperature Behavior of Junctionless<br>Multiple Gate nMOSFETs                                                                  | Aug 2010                 | Brazil                      | Scientific<br>Community,<br>Industry | 100        | All           |
| 128. | Conference | JP Colinge, Tyndall                         | ESSDERC                                                                                         | Junctionless Nanowire Transistor (JNT):<br>Properties and Design Guidelines                                                         | Sept 2010                | Spain                       | Scientific<br>Community,<br>Industry | 200        | All           |
| 129. | Conference | JP Colinge, Tyndall                         | Solid-State Devices and Materials<br>Conference (SSDM)                                          | Analysis of the Junctionless Transistor Architecture                                                                                | Sept 2010                | Japan                       | Scientific<br>Community,<br>Industry | 200        | All           |
| 130. | Conference | JP Colinge, Tyndall                         | Solid-State Devices and Materials<br>Conference (SSDM)                                          | Short-Channel Junctionless Nanowire<br>Transistors                                                                                  | Sept 2010                | Japan                       | Scientific<br>Community,<br>Industry | 200        | All           |
| 131. | Conference | JP Raskin, UCL, Tyndall                     | IEEE International SOI Conference                                                               | Mobility Improvement in Nanowire<br>Junctionless Transistors by Uniaxial Strain                                                     | Oct 2010                 | USA                         | Scientific<br>Community,<br>Industry | 100        | All           |
| 132. | Conference | JP Colinge, Tyndall                         | EUROSOI 2011                                                                                    | Comparison of the switching speed in junctionless and accumulation-mode gate-all-around nanowire transistors                        | Jan 2011                 | Spain                       | Scientific<br>Community,<br>Industry | 100        | All           |
| 133. | Conference | A. Nazarov, ISP-Ukraine, Tyndall            | EUROSOI 2011                                                                                    | Extraction of flat-band voltage and parasitic resistance in junctionless MuGFETs                                                    | Jan 2011                 | Spain                       | Scientific<br>Community,<br>Industry | 100        | All           |
| 134. | Conference | R. T. Doria, USP-Brazil, Tyndall            | EUROSOI 2011                                                                                    | Analytical Model for the Threshold Voltage of Junctionless Nanowire Transistors                                                     | Jan 2011                 | Spain                       | Scientific<br>Community,<br>Industry | 100        | All           |
| 135. | Conference | JP Colinge, Tyndall                         | ULIS 2011                                                                                       | Performance Investigation of Short-channel Junctionless Multigate Transistors                                                       | March 2011               | Ireland                     | Scientific<br>Community,<br>Industry | 100        | All           |

| NANOSIL | Final Report | January 2008 to March 2011 | 78 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 136. | Conference | Tyndall-UCC                                                         | INFOS 2011                                                                       | Investigation of bulk defects in amorphous and crystalline HfO2 thin films                                                                                                          | 21 June<br>2011                  | Grenoble                | Scientific<br>Community,<br>Industry | ~ 150 to 200 | International |
|------|------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|--------------------------------------|--------------|---------------|
| 137. | Conference | Yuri Y. Gomeniuk<br>ISP Kiev, Tyndall-UCC                           | INFOS 2011                                                                       | Transport and Interface States in High-k<br>LaSiOx Dielectric                                                                                                                       | 21 June<br>2011                  | Grenoble                | Scientific<br>Community,<br>Industry | ~ 150 to 200 | International |
| 138. | Conference | Yuri Y. Gomeniuk<br>ISP -Kiev, yndall-UCC, KTH,<br>AMO, Jülich      | 6 <sup>th</sup> SemOl Conference and 1 <sup>st</sup><br>Ukrainian-French Seminar | Electrical properties of high-k LaLuO3 gate oxide for SOI MOSFETs                                                                                                                   | 24-26<br>October<br>2010         | Kyiv                    | Scientific<br>Community,<br>Industry | ~ 150        | International |
| 139. | Conference | Yuri Y. Gomeniuk<br>ISP-Kiev, Tyndall-UCC, AMO,<br>Jülich, Chalmers | ECS-218 (2010)                                                                   | Electrical Properties of LaLuO3/Si(100) Structures Prepared by Molecular Beam Deposition                                                                                            | 13 October<br>2010               | Las Vegas               | Scientific<br>Community,<br>Industry |              | International |
| 140. | Conference | Tyndall-UCC, AMO, Jülich                                            | WoDiM 2010                                                                       | The onset of electrical stress in 3nm and 6nm molecular beam deposited LaLuO3 MOSCAPs on n-Si(100) substrates using a TiN metal gate and an Al back contact                         | 28-30 <sup>th</sup> June<br>2010 | Bratislava,<br>Slovakia | Scientific<br>Community,<br>Industry |              | International |
| 141. | Conference | M. Balaguer, et al, URV, UGR                                        | EUROSOI                                                                          | An analytical compact model for Schottky-<br>Barrier Double Gate MOSFETs                                                                                                            | January<br>2010                  | Grenoble<br>(France)    | Scientific<br>Community,<br>Industry |              | International |
| 142. | Conference | G. Darbandy, et al,<br>URV                                          | EUROSOI                                                                          | Analytical Modeling of Direct Tunnelling<br>Current through SiO2/high-k Gate Stacks for<br>the Determination of Suitable High-k<br>Dielectrics for Nanoscale Double-Gate<br>MOSFETs | January<br>2010                  | Grenoble<br>(France)    | Scientific<br>Community,<br>Industry |              | International |
| 143. | Conference | R. Ritzenthaler, et al. URV,<br>CEA/Leti, INPG                      | EUROSOI                                                                          | A 2D analytical model of threshold voltage for Pi-gate FinFET transistors                                                                                                           | January<br>2010                  | Grenoble<br>(France)    | Scientific<br>Community,<br>Industry |              | International |
| 144. | Conference | M. Cheralathan, et al URV                                           | ULIS                                                                             | Compact potential and current model for long-<br>channel doped cylindrical surrounding-gate<br>MOSFETs                                                                              | March 2010                       | Glasgow<br>(UK)         | Scientific<br>Community,<br>Industry |              | International |
| 145. | Conference | R. Ritzenthaler, et al. URV,<br>CEA/Let, INPG                       | 40th European Solid-State Device<br>Research conference (ESSDERC)                | 3D Analytical Modelling of Subthreshold<br>Characteristics in Pi-gate FinFET Transistors                                                                                            | September<br>2010                | Sevilla<br>(Spain)      | Scientific<br>Community,<br>Industry |              | International |
| 146. | Conference | R. Ritzenthaler et al. URV,<br>CEA/Let, INPG                        | IEEE International SOI conference                                                | Parasitic Back-Inferface Conduction in Planar and Triple-Gate SOI Transistors                                                                                                       | 2010                             | San Diego<br>(USA)      | Scientific<br>Community,<br>Industry |              | International |
| 147. | Conference | M. Schwarz, et al<br>URV                                            | ULIS                                                                             | 2D closed-form model for the source/drain orthogonal electric field in lightly-doped Schottky-Barrier Double-Gate MOSFETs                                                           | 2010                             | Glasgow<br>(UK)         | Scientific<br>Community,<br>Industry |              | International |
| 148. | Conference | M. Schwarz, et al<br>URV                                            | ESSDERC Fringe Poster Session                                                    | 2D Analytical Calculation of the Tunneling<br>Current in Lightly Doped Schottky Barrier<br>Double-Gate MOSFET                                                                       | 2010                             | Sevilla<br>(Spain)      | Scientific<br>Community,<br>Industry |              | International |
| 149. | Conference | M. Schwarz, et al<br>URV                                            | MIXDES                                                                           | Analytical 2D Model for the Channel Electric<br>Field in Undoped Schottky Barrier Double-<br>Gate MOSFET                                                                            | 2010                             | Wroclaw<br>(Poland)     | Scientific<br>Community,<br>Industry |              | International |
| 150. | Conference | G. Darbandy, et al                                                  | EUROSOI                                                                          | Study of Potential High-k Dielectrics for sub                                                                                                                                       | 2011                             | Granada                 | Scientific                           |              | International |

| NANOSIL Final Report | January 2008 to March 2011 | 79 / 107 |
|----------------------|----------------------------|----------|
|----------------------|----------------------------|----------|

|      |            | URV                                                   |                                                                         | 15 nm UTB SOI<br>MOSFETs, Using Analytical Models of the<br>Gate Tunneling Leakage                                                |                         | (Spain)              | Community,<br>Industry               |     |                    |
|------|------------|-------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|--------------------------------------|-----|--------------------|
| 151. | Conference | R. Ritzenthaler, et al<br>URV, CEA/Let, INPG          | EUROSOI                                                                 | A Short-Channel Analytical Model for Triplegate and Planar FDSOI Transistors                                                      | 2011                    | Granada<br>(Spain)   | Scientific<br>Community,<br>Industry |     | International      |
| 152. | Conference | M. Cheralathan, et al<br>URV, UGR                     | EUROSOI                                                                 | A Compact Double-Gate MOSFET Model<br>Consistent with a MultiSubband Ensemble<br>Monte Carlo Model                                | 2011                    | Granada<br>(Spain)   | Scientific<br>Community,<br>Industry |     | International      |
| 153. | Conference | M. Schwarz, et al<br>URV                              | EUROSOI                                                                 | 2D Analytical Calculation of the Current in<br>Lightly Doped Schottky<br>Barrier DG MOSFET                                        | 2011                    | Granada<br>(Spain)   | Scientific<br>Community,<br>Industry |     | International      |
| 154. | Conference | M. Cheralathan,et al<br>URV, UGR, IUNET               | ULIS                                                                    | Analytical Drain Current Model Reproducing<br>Advanced Transport Models in nanoscale<br>Double-Gate (DG) MOSFETs                  | 2011                    | Cork<br>(Ireland)    | Scientific<br>Community,<br>Industry |     | International      |
| 155. | Conference | T. Holtij,et al<br>URV                                | ULIS                                                                    | 2D Analytical Calculation of the Source/Drain<br>Access Resistance in DG-MOSFET<br>Structures                                     | 2011                    | Cork<br>(Ireland)    | Scientific<br>Community,<br>Industry |     | International      |
| 156. | Conference | M. Schwarz, et al<br>URV                              | ULIS                                                                    | 2D Analysis of Source/Drain Carrier Tunneling in Lightly Doped Schottky Barrier DG-MOSFETs Using a Fully Analytical Model         | 2011                    | Cork<br>(Ireland)    | Scientific<br>Community,<br>Industry |     | International      |
| 157. | Conference | UGR<br>Jose Luis Padilla, Francisco Gamiz             | ULIS-2010                                                               | Barrier lowering implementation in SB-<br>MOSFETs<br>on SOI substrates                                                            | 16-18 March             | Glasgow              | Scientific<br>Community,<br>Industry |     | UK                 |
| 158. | Conference | UGR<br>Carlos Sampedro, Francisco<br>Gamiz et al.     | ULIS-2010                                                               | Channel Length impact on Velocity Overshoot in UTB-DGSOI                                                                          | 16-18 March             | Glasgow              | Scientific<br>Community,<br>Industry |     | UK                 |
| 159. | Conference | B. Raeissi,<br>Chalmers, ITE, AMO, FZ Julich          | 16 <sup>th</sup> Workshop on Dielectrics in<br>Microelectronics (Wodim) | Interface state properties of high-k/SiOx/Si interfaces portrayed by multiparameter admittance spectroscopy                       | June 28 –<br>30, 2010   | Bratislava           | Scientific<br>Community,<br>Industry | 120 | Worldwide          |
| 160. | Conference | O. Engström<br>Chalmers, IMEP-LAHC, FZ Julich,<br>AMO | 16 <sup>th</sup> Workshop on Dielectrics in<br>Microelectronics (Wodim) | Capture cross sections for holes at LaLuO/Si interfaces                                                                           | June 28 –<br>30, 2010   | Bratislava           | Scientific<br>Community,<br>Industry | 120 | Mostly<br>European |
| 161. | Conference | I.Z. Mitrovic et al<br>LIVUNI, Julich                 | INFOS'2011                                                              | Study of interfaces and band offsets in TiN/amorphous LaLuO <sub>3</sub> gate stacks'                                             | 21-24 June<br>2011      | Grenoble,<br>France  | Scientific<br>Community,<br>Industry | 200 | worldwide          |
| 162. | Conference | N. Sedghi et al<br>LIVUNI, Julich                     | 219 <sup>th</sup> ECS Meeting                                           | Investigation of Electron and Hole Charge<br>Trapping in LaLuO <sub>3</sub> Stack MOS Capacitor<br>Using the 3-Pulse CV Technique | 1-6 May<br>2011         | Montreal,<br>Canada  | Scientific<br>Community,<br>Industry | 200 | worldwide          |
| 163. | Conference | N. Sedghi/<br>LIVUNI, Julich                          | 41st IEEE SISC 2010                                                     | Charge Trapping in LaLuO <sub>3</sub> MOS Capacitors using a New 3-Pulse CV Technique                                             | 2-4<br>December<br>2010 | San<br>Diego,<br>USA | Scientific<br>Community,<br>Industry | 200 | worldwide          |
| 164. | Conference | S Makovejev, et al<br>UNEW, UCL                       | SiRF                                                                    | RF extraction of self-heating effects in FinFETs of various geometries                                                            | January<br>2011         | Phoenix,U<br>SA      | Scientific<br>Community,<br>Industry |     | International      |
| 165. | Conference | R Kapoor, et al                                       | ESREF                                                                   | Characterising gate dielectrics in high mobility                                                                                  | October                 | Italy                | Scientific                           |     | International      |

| NANOSIL | Final Report | January 2008 to March 2011 | 80 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

|      |            | UNEW                                                       |                                                                                                        | devices using novel nanoscale techniques                                                                        | 2010             |                | Community,                              |               |
|------|------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|----------------|-----------------------------------------|---------------|
| 166. | Conference | S Makovejev, et al UNEW, UCL                               | ULIS                                                                                                   | Self-heating effect characterisation in SOI FinFETs                                                             | March 2010       | Glasgow,<br>UK | Industry Scientific Community, Industry | International |
| 167. | Conference | E Escobedo-Cousin et al<br>UNEW, UCL                       | MRS                                                                                                    | Characterizing the effect of uniaxial strain on the surface roughness of Si nanowire MEMS-based microstructures | November<br>2010 | Boston,<br>USA | Scientific<br>Community,<br>Industry    | International |
| 168. | Conference | A. Asenov et al., GU                                       | Custom Integrated Circuits Conference (CICC), 2010 IEEE                                                | Modeling and Simulation of Transistor and Circuit Variability and Reliability                                   | Sept. 2010       | USA            | Scientific<br>Community,<br>Industry    | International |
| 169. | Conference | A. Asenoc et al., GU                                       | Design, Automation & Test in Europe<br>Conference & Exhibition (DATE),<br>2010                         | Capturing Intrinsic Parameter Fluctuations using the PSP Compact Model                                          | March 2010       | Dresden        | Scientific<br>Community,<br>Industry    | International |
| 170. | Conference | E. Sangiorgi et al. IUNET, WUT, GU, UPS,                   | MIEL conference                                                                                        | Drain Current Computation in Nanoscale nMOSFETs: Comparison of Transport Models                                 | May 2010         |                | Scientific<br>Community,<br>Industry    | International |
| 171. | Conference | A. Paussa et al. IUNET-Udine                               | International Conference on Simulation of<br>Semiconductor Processes and Devices<br>(SISPAD)           | Pseudo-Spectral Method for the Modelling of<br>Quantization Effects in Nanoscale MOS Transistors                | March 2010       |                | Scientific<br>Community,<br>Industry    | International |
| 172. | Conference | P.Toniutti, et al IUNET-Udine                              | International Conference on Ultimate Integration on Silicon (ULIS)                                     | Understanding the mobility reduction in MOSFETs featuring high-κ dielectrics                                    | March 2010       |                | Scientific<br>Community,<br>Industry    | International |
| 173. | Conference | V.Gudmundssonet al. IUNET-Udine and KTH                    | International Conference on Ultimate Integration                                                       | Multi-subband Monte Carlo simulation of fully-<br>depleted silicon-on-insulator Schottky barrier<br>MOSFETs     | March 2010       | UK             | Scientific<br>Community,<br>Industry    | International |
| 174. | Conference | A. Betti G. Fiori, G. lannaccone -<br>IUNET Pisa           | 14th International Workshop on<br>Computational Electronics, (IWCE 2010)                               | Enhanced shot noise in carbon nanotube FETs due to electron-hole interaction                                    | Oct. 2010        |                | Scientific<br>Community,<br>Industry    | International |
| 175. | Conference | G. Giusi, G. lannaccone, D. Maji, F.<br>Crupi - IUNET Pisa | 10th IEEE International Conference on<br>Solid-State and Integrated Circuit<br>Technology (CSICT-2010) | Experimental extraction of barrier lowering and backscattering in saturated short-channel MOSFETs               | Nov. 2010        |                | Scientific<br>Community,<br>Industry    | International |
| 176. | Conference | G. lannaccone, A. Betti, G. Fiori -<br>IUNET Pisa          | International Conference on Simulation of<br>Semiconductor Processes and Devices,<br>(SISPAD 2010)     | Transport and noise properties of graphene-based transistors revealed through atomistic modelling               | March 2010       |                | Scientific<br>Community,<br>Industry    | International |
| 177. | Conference | G. Fiori, et al IUNET Pisa                                 | 14th International Workshop on<br>Computational Electronics, (IWCE 2010)                               | A multi-scale approach for performance assessment of hydrogenated graphene Field-Effect Transistors             | Oct. 2010        |                | Scientific<br>Community,<br>Industry    | International |
| 178. | Conference | V. Bonfiglio, G. lannaccone - IUNET<br>Pisa                | 14th International Workshop on<br>Computational Electronics, (IWCE 2010)                               | Evaluation of threshold voltage dispersion in 45 nm CMOS technology with TCAD-based sensitivity analysis        | Oct. 2010        |                | Scientific<br>Community,<br>Industry    | International |
| 179. | Conference | L. Silvestri, et al<br>IUNET-Bologna                       | International Conference on Ultimate Integration on Silicon (ULIS)                                     | Mobility Model for Electrons and Holes in FinFETs with High-κ Stacks, Metal Gate and Stress                     | March 2010       | UK             | Scientific<br>Community,<br>Industry    | International |
| 180. | Conference | A.T. Pham, TUBS                                            | IWCE                                                                                                   | Simulation of Landau quantization effects due to strong magnetic fields in(110) Si hole inversion               | Oct. 2010        |                | Scientific<br>Community,                | International |

|  | NANOSIL | Final Report | January 2008 to March 2011 | 81 / 107 |
|--|---------|--------------|----------------------------|----------|
|--|---------|--------------|----------------------------|----------|

|      |            |                                         |                                                                                                                                                                                                                                         | layers                                                                                                                                                            |            |         | Industry                             |               |
|------|------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--------------------------------------|---------------|
| 181. | Conference | A.T. Pham, TUBS                         | ESSDERC                                                                                                                                                                                                                                 | Comparison of Strained SiGe Heterostructure on Insulator (001) and (110) PMOSFETSs: C-V Characteristics, Mobility, and ON current                                 | Sept. 2010 | Spain   | Scientific<br>Community,<br>Industry | International |
| 182. | Conference | H. Xu,<br>USTUTT                        | 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)                                                                                                                                                     | Integrated W-band RECTENNA (rectifying antenna) with Ge quantum dot Schottky Diode                                                                                | Feb. 2011  |         | Scientific<br>Community,<br>Industry | International |
| 183. | Conference | M. Schmidt, et al<br>AMO, RWTH          | 11th Topical Meeting on Silicon Monolithic<br>Integrated Circuits in RF Systems (SiRF)                                                                                                                                                  | Mobility Extraction in sub 10nm Nanowire nMOSFETs with Gadolinium-Silicate as Gate Dielectric                                                                     | Feb. 2011  |         | Scientific<br>Community,<br>Industry | International |
| 184. | Conference | J. Jasiński<br>(WUT, FZJ)               | 10th ELTE Conference 2010                                                                                                                                                                                                               | Influence of annealing temperature on MOSCAPs with LaLuO gate oxide                                                                                               | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 185. | Conference | M. Iwanowicz<br>(WUT, AMO)              | 10th ELTE Conference 2010                                                                                                                                                                                                               | Studies of the quality of GdSiO-Si interface                                                                                                                      | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 186. | Conference | M. Iwanowicz (WUT)                      | 10th ELTE Conference 2010                                                                                                                                                                                                               | Vector generator for pulse characterization of MOS devices                                                                                                        | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 187. | Conference | J. Jasiński<br>(WUT)                    | 10th ELTE Conference 2010                                                                                                                                                                                                               | Electrical characterization of MOSFETs with<br>HfSiON gate                                                                                                        | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 188. | Conference | R. Mroczyński<br>(WUT)                  | WoDiM 2010                                                                                                                                                                                                                              | Reliability issues of double gate dielectric stacks based on hafnium dioxide (HfO <sub>2</sub> ) layers for non-volatile semiconductor memory (NVSM) applications | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 189. | Conference | M. Kalisz (WUT)                         | 5th Wide Bandgap Materials - progress in<br>synthesis and applications and 7th<br>Diamond & Related Films<br>jointly with 2nd International Workshop on<br>Science and Applications of Nanoscale<br>Diamond Materials, Zakopane, Poland | Effect of the Fluorine Implantation from r.f. CF <sub>4</sub> plasma on Electrical Characteristics of MIS Structures with PECVD Silicon Oxynitride Layers         | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 190. | Conference | M. Kalisz (WUT)                         | 10th Conference "Electron Technology",<br>ELTE 2010, Wrocław, Poland                                                                                                                                                                    | Improvement of immunity on MeV electron radiation of MOS structures by means of ultra-shallow fluorine implantation                                               | 2010       |         | Scientific<br>Community,<br>Industry | International |
| 191. | Conference | E. Gnani et al<br>IUNET                 | ULIS 2011                                                                                                                                                                                                                               | Numerical Investigation on the Junctionless<br>Nanowire FET                                                                                                       | 2011       | Ireland | Scientific<br>Community,<br>Industry | International |
| 192. | Conference | L. Knoll et al<br>FFZJ                  | ULIS 2011                                                                                                                                                                                                                               | 20 nm gate length Schottky MOSFETs with ultra thin NiSi/epitaxial NiSi2 source/drain                                                                              | 2011       | Ireland | Scientific<br>Community,<br>Industry | International |
| 193. | Conference | A. Martinez<br>UG                       | ULIS                                                                                                                                                                                                                                    | NEGF simulations of a junctionless Si gate-all-<br>around nanowires transistor with discrete dopants                                                              | 2011       | Ireland | Scientific<br>Community,<br>Industry | International |
| 194. | Conference | I. Ben-Akkez et al<br>INPG, ST, CEA/Let | ULIS                                                                                                                                                                                                                                    | Characterization and modeling of capacitances in FD-SOI devices                                                                                                   | 2011       | Ireland | Scientific<br>Community,             | International |

|  | NANOSIL | Final Report | January 2008 to March 2011 | 82 / 107 |
|--|---------|--------------|----------------------------|----------|
|--|---------|--------------|----------------------------|----------|

|      |            |                                               |              |                                                                                                                                  |                             |                   | Industry                             |               |
|------|------------|-----------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|--------------------------------------|---------------|
| 195. | Conference | A.Nazarov et al<br>Tyndall-UCC, ISP-Kiev      | ULIS         | Extraction of channel mobility in nanowires MOSFETs using Id(Vg) characteristics                                                 | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 196. | Conference | A. Kranti et al<br>UCL                        | ULIS         | Source/Drain engineering ultra low power analog/RF UTBB MOSFETs                                                                  | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 197. | Conference | J. El Husseini et al<br>URV, IES Monrpelllier | ULIS         | A surface potential based compact model for lightly doped FD SOI MOSFETs with ultra-thin body                                    | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 198. | Conference | A. Nichau et al<br>FZJ                        | ULIS         | Lanthanum Lutetium oxide integration in a gate-first process on SOI MOSFETs                                                      | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 199. | Conference | X. Wand, et al<br>GU                          | ULIS         | Channel length dependence of statistical threshold voltage variability in extremely scaled HKMG MOSFETs                          | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 200. | Conference | Q. Rafhay, et al.<br>INPG, Cea/Let            | ULIS         | Revised approach for the characterization of GIDL                                                                                | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 201. | Conference | M. Schmidt, et al<br>FZJ, CEA/Let             | ULIS         | Impact of strain and Ge concentration on the<br>performance of planar SiGe band-to-band tunneling<br>transistors                 | 2011                        | Ireland           | Scientific<br>Community,<br>Industry | International |
| 202. | Conference | A. Hubert et al<br>INPG, Leti                 | ESSDERC      | Experimental comparison of programming mechanisms in 1T-DRAM                                                                     | 2010                        | Spain             | Scientific<br>Community,<br>Industry | International |
| 203. | Conference | C. Sampedro et al                             | ESSDERC      | Multi-subband Monte Carlo Simulation of bulk MOSFETs for the 32nm-Node and beyond                                                | 2010                        | Spain             | Scientific<br>Community,<br>Industry | International |
| 204. | Conference | S.Narasimhamoorthy et al INPG/FMT             | ESSDERC'2010 | Parameter extraction of nanoscale MOSFETs using modified Y function method                                                       | September<br>2010           | Sevilla,<br>Spain | Scientific<br>Community              | International |
| 205. | Conference | K. Boucart, et al. EPFL                       | ESSDERC'2010 | A simulation-based study of sensitivity to<br>parameter fluctuations of Si tunnel FETs                                           | 13-17<br>September<br>2010, | Sevilla,<br>Spain | Scientific<br>Community              | International |
| 206. | Conference | K. Tachi et al<br>INPG/FMNT, CEA/Leti, ST,    | ESSDERC'2010 | SD Source/Drain doping optimization in multi-<br>channel MOSFET                                                                  | 13-17<br>September<br>2010  | Sevilla,<br>Spain | Scientific<br>Community              | International |
| 207. | Conference | S. Habicht, et al<br>FZJ                      | ESSDERC'2010 | Hole mobilities and electrical characteristics of omega-gated silicon nanowires array FETs with 110- and 100-channel orientation | 13-17<br>September<br>2010, | Sevilla,<br>Spain | Scientific<br>Community              | International |
| 208. | Conference | N. Rodrigez, et al.<br>INPG/FMNT, UGR         | ESSDERC'2010 | Origins of universal mobility violation in SOI MOSFETs                                                                           | 13-17 Sept.<br>2010         | Sevilla,<br>Spain | Scientific<br>Community              | International |

## A2. LIST OF DISSEMINATION ACTIVITIES FOR PERIOD 2 AND 1 (EXTRACTED FROM D5.2 AND D5.1)

| NO   | Title of conferences and workshops                                                            | Author(s)                                                                                                                                                                                                 | Nanosil<br>partners                     | Conference/ Workshop<br>(title)                                                                                | Date &<br>Location                                | Type of presentation (oral/poster/invited) | Status<br>(done/acc<br>epted/<br>submitted) |
|------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------|
| 209. | Electrical Transport characterization of nano CMOS devices with ultra-thin silicon film       | G. Ghibaudo et al.                                                                                                                                                                                        | INPG/<br>FMNT,<br>CEA/LETI,<br>ST, IMEC | 9th International Workshop on Junction Technology (IWJT 2009)                                                  | 11-12 June 2009,<br>Kyoto, Japan                  | Invited<br>keynote<br>paper                | Done                                        |
| 210. | SOI as a platform for transition from micro to nano                                           | F. Balestra                                                                                                                                                                                               | INPG-FMNT                               | ECS Int. Symp. SOI Technology & Devices,                                                                       | May 2009, San<br>Francisco USA                    | Invited                                    | Done                                        |
| 211. | Silicon-based devices and materials for nanoscale CMOS and beyond-CMOS                        | F. Balestra                                                                                                                                                                                               | INPG-FMNT                               | FTM'2009                                                                                                       | June 2009,<br>Sardinia                            | Invited                                    | Done                                        |
| 212. | SOI- a platform for transition from micro to nano                                             | F. Balestra                                                                                                                                                                                               | INPG-FMNT                               | IEEE International Semiconductor Conference-CAS                                                                | Oct.2009, Sinaia,<br>Romania                      | Invited                                    | Done                                        |
| 213. | Multi-gate Devices for High Performance, Ultra Low Power and Memory applications              | F. Balestra                                                                                                                                                                                               | INPG-FMNT                               | ECS Int. Symposium "ULSI<br>Process Integration"                                                               | Vienna, Austria,<br>Oct. 2009                     | Invited                                    | Done                                        |
| 214. | 3D quantum transport simulations of Si Nanowires: impact of elastic and inelastic scattering  | M.G. Pala                                                                                                                                                                                                 | FMNT/ INPG                              | SINANO-NANOSIL Workshop                                                                                        | 18 September<br>2009, Athens<br>(Greece)          | Invited                                    | Done                                        |
| 215. | Ultra compact FDSOI transistors including strain and orientation : processing and performance | C. Fenouillet-Beranger, L. Pham<br>Nguyen, P. Perreau, S. Denorme, F.<br>Andrieu, O. Faynot, L. Tosti, L. Brevard,<br>C. Buj, O. Weber, C. Gallon, V. Fiori, F.<br>Boeuf, S. Cristolovea-nu, T. Skotnicki | FMNT/INPG,<br>CEA-LETI                  | 14th Int. Symposium on Silicon on Insulator Technology and Devices, 215th Meeting of the Electrochemical Soc., | San Francisco,<br>USA (25–29 mai<br>2009)         | INVITED paper                              | Done                                        |
| 216. | Floating-body SOI memory: concepts, physics and challenges                                    | M. Bawedin, S. Cristoloveanu, D. Flandre, F. Udrea                                                                                                                                                        | INPG/FMNT,<br>UCL                       | 14th Int. Symposium on Silicon on<br>Insulator Technology and Devices,<br>215th ECS Meeting                    | San Francisco,<br>USA (25–29 mai<br>2009)         | INVITED paper                              | Done                                        |
| 217. | Cooltronics – a new silicon technology                                                        | D.R.Leadley, M.Prest, T.E.Whall, EHC.<br>Parker, M. Meschke, J. Muhonen, J.P.<br>Pekola, J. Ahopelto and M Prunnila                                                                                       | Warwick                                 | 9th Symposium Diagnostics and<br>Yield: Advanced silicon devices for<br>the ULSI era                           | Warsaw (2009)                                     | Oral Invited                               | Done                                        |
| 218. | Accurate effective mobility extraction in SOI MOS transistors                                 | S.M. Thomas, T.E. Whall, E.H.C.<br>Parker, D.R. Leadley, R.J.P Lander, G.<br>Vellianitis, J.R. Watling,                                                                                                   | Warwick                                 | 9th Symposium Diagnostics and Yield: Advanced silicon devices for the ULSI era,                                | Warsaw (2009).                                    | Oral<br>Invited                            | Done                                        |
| 219. | Realization of globally strained Ge layers                                                    | M. Myronov and D.R. Leadley                                                                                                                                                                               | Warwick                                 | E-MRS 2009                                                                                                     | Strasbourg,<br>France, June 8-<br>12, (2009) oral | Oral<br>Invited                            | Done                                        |
| 220. | Schottky-Barrier Source/Drain MOSFET technology                                               | PE. Hellström, M. Östling, V<br>Gudmundsson, J. Luo, Z. Zhang, B. G.<br>Malm and SL. Zhang                                                                                                                | KTH                                     | Design and Yield 2009                                                                                          | 22-24 June,<br>Warzawa                            | Oral/<br>Invited                           | Done                                        |

| NANOSIL | Final Report | January 2008 to March 2011 | 84 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 221. | Implementation of Schottky Barrier contact technology in ultra scaled MOSFETs                         | V. Gudmundsson, M Östling, PE.<br>Hellström, J. Luo, Z. Zhang, Z. Qiu, B.<br>G. Malm and SL. Zhang                                                                                                                                                              | KTH                                   | 1st Int.Workshop on Si based nano-electronics and –photonics SiNEP-09                                                                  | 20- 23rd<br>September 2009                  | Oral/<br>Invited | Done |
|------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|------|
| 222. | "Perspectives of graphene nanoelectronics: probing technological options with modeling"               | G. Iannaccone, G. Fiori, M. Macucci, P. Michetti, M. Cheli, A. Betti, P. Marconcini                                                                                                                                                                             | IUNET                                 | International Electron Device<br>Meeting                                                                                               | 2009<br>Baltimore                           | Invited          | Done |
| 223. | Opportunities and limitations of SOI technology: for RF applications                                  | JP. Raskin                                                                                                                                                                                                                                                      | UCL                                   | 8th Diagnostics & Yield<br>Symposium                                                                                                   | June 22-24, 2009,<br>Warsaw, Poland         | invited          | Done |
| 224. | Assessment of advanced SOI technologies for<br>high-temperature applications                          | J. Alvarado, V. Kilchytska, D; Flandre                                                                                                                                                                                                                          | UCL                                   | 8th Diagnostics & Yield<br>Symposium                                                                                                   | June 22-24, 2009,<br>Warsaw, Poland         | invited          | Done |
| 225. | SOI technology: an opportunity for RF designers?                                                      | JP. Raskin                                                                                                                                                                                                                                                      | UCL                                   | EUROSOI – 2009, Fifth Workshop<br>of the Thematic Network on Silicon<br>on Insulator technology, devices<br>and circuits               | January 19-21,<br>2009, Göteborg,<br>Sweden | invited          | Done |
| 226. | Metallic Source/Drain Architecture for Advanced MOS Technology: an overview                           | E. Dubois, G. Larrieu, N. Breil, R. Valentin, F. Danneville, D. Yarekha, N. Reckinger, X. Tang, A. Halimaoui, R. Rengel, E. Pascual, A. Pouydebasque, X. Wallart, S. Godey, J. Ratajczak, A. Laszcz, J. Katcki, J.P. Raskin, G. Dambrine, A. Cros, T. Skotnicki | ISEN-IEMN<br>UCL<br>ST<br>ITE<br>USAL | 8th Symposium Diagnostics & Yield Advanced Silicon Devices and Technologies for ULSI Era                                               | June 22-24, 2009,<br>Warszawa,<br>Poland    | Oral<br>Invited  | Done |
| 227. | Metallic source/drain for advanced MOS architectures: from material engineering to device integration | E. Dubois, G. Larrieu, N. Breil, R. Valentin, F. Danneville, D. Yarekha, N. Reckinger, X. Tang, A. Halimaoui, R. Rengel, E. Pascual, A. Pouydebasque, X. Wallart, S. Godey, J. Ratajczak, A. Laszcz, J. Katcki, J.P. Raskin, G. Dambrine, A. Cros, T. Skotnicki | ISEN-IEMN<br>UCL<br>ST<br>ITE<br>USAL | SINANO-NANOSIL Workshop<br>Silicon-based CMOS and Beyond-<br>CMOS Nanodevices                                                          | September 18,<br>2009, Athens               | Oral<br>Invited  | Done |
| 228. | Novel channel and dielectric materials for nanoelectronics                                            | S.F. Feste, D. Buca, R.A. Minimisawa,<br>Q.T. Zhao, J.M. Lopes, J. Schubert, B.<br>Holländer, S. Mantl                                                                                                                                                          | FZJ                                   | International Workshop on Si based nanoelectronics and photonics                                                                       | Vigo, Spain 20 -<br>23 September<br>2009    | Invited          | Done |
| 229. | Porous Si as a local substrate technology platform for on-chip electronic and sensor applications     | A. G. Nassiopoulou                                                                                                                                                                                                                                              | NCSR                                  | TUAT/TEL International Workshop<br>"Innovations of the Silicon, by the<br>Silicon, for the Silicon"                                    | 18-9-2009 Tokyo                             | Invited          | Done |
| 230. | "Ordered arrays of SiO2 nanodots with embedded Si nanocrystals: Fabrication and characterization"     | A. G. Nassiopoulou                                                                                                                                                                                                                                              | NCSR                                  | 216th ECS Meeting – Vienna,<br>Austria, E1 – Analytical<br>Techniques for Semiconductor<br>Materials and Process Cha-<br>racterization | 6-10-2009                                   | Invited          | Done |
| 231. | "Silicon nanostructuring through self-assempled masking layers"                                       | Nassiopoulou                                                                                                                                                                                                                                                    | NCSR                                  | EMRS 2009_ Symposium M,<br>Strasbourg,                                                                                                 | 9-13 June 2009                              | Invited          | Done |
| 232. | Advances in SOI Compact Modeling                                                                      | B. Iñiguez, R. Ritzenthaler                                                                                                                                                                                                                                     | URV                                   | MOS-AK Workshop                                                                                                                        | Dec. 9, 2009,<br>Baltomore (MA,<br>USA)     | Invited          | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 85 / 107  |
|---------|--------------|----------------------------|-----------|
| NANOSIL | rmai Keport  | January 2008 to March 2011 | 83 / 10 / |

| 233. | CMOS: Is this the end of the beginning or the end of the end?                                               | O. Engström                                                                                                               | Chalmers                                   | Nordic Semiconductor Meeting,                                                                     | June 15 - 17,<br>2009<br>Reykiavik                           | Invited             | Done |
|------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|------|
| 234. | Charging phenomena at the interface between high-k dielectrics and SiOx interlayers                         | O. Engström, B. Raeissi, J. Piscator, I.Z.Mitrovic, S. Hall, H.D.B.Gottlob, M. Schmidt, P. Hurley, K. Cherkaoui,          | Chalmers,<br>Liverpool,<br>AMO,<br>Tyndall | 8th Symposium Diagnostics & Yield Advanced Silicon Devices and Technologies for the ULSI Era      | June 22 - 24,<br>2009<br>Warsaw                              | Invited             | Done |
| 235. | Limitations in future high-k materials                                                                      | O. Engström                                                                                                               | Chalmers                                   | NANOSIL Workshop at ESSDERC                                                                       | Athens, Sept. 14 - 18, 2009                                  | Invited             | Done |
| 236. | Classification of energy levels in quantum dot structures by means of depletion layer spectroscopy methods. | M.Kaniewska, O. Engström, M.<br>Kaczmarczyk                                                                               | ITE,<br>Chalmers                           | 13th International Conference on<br>Defects-Recognition, Imaging and<br>Physics in Semiconductors | Wheeling, West<br>Virginia, USA,<br>September 13-17,<br>2009 | Invited             | Done |
| 237. | Sub-kT/q subthreshold slope transistors                                                                     | A.M. Ionescu                                                                                                              | EPFL                                       | ESSDERC 2009                                                                                      | Athens, Sept. 14, 2009                                       | Invited<br>Tutorial | Done |
| 238. | Simulation of gate leakage currents in UTB MOSFETs and Nanowires                                            | A. Schenk                                                                                                                 | ETHZ                                       | SINANO-NANOSIL Workshop "Silicon-based CMOS and Beyond- CMOS Nanodevices                          | Athens,<br>September 18,<br>2009                             | Invited talk        | Done |
| 239. | Simulation of band-to-band tunneling in Si<br>nanoscale devices: The<br>role of junction profiles           | A. Schenk                                                                                                                 | ETHZ                                       | NODE Device Workshop                                                                              | IBM Rüschlikon,<br>Zürich, June 11,<br>2009                  | Invited             | Done |
| 240. | Rare earth silicate formation – a route towards high-k for the 22 nm node and beyond                        | I.Z. Mitrovic, S. Hall                                                                                                    | Livuni                                     | Diagnostics&Yield 2009                                                                            | Warsaw, Poland,<br>June 2009                                 | invited             | Done |
| 241. | Charging phenomena at the interface between high-k dielectrics and SiOx interlayers                         | O. Engstrom, B. Raeissi, J. Piscator, I.Z.<br>Mitrovic, S. Hall, H.D.B. Gottlob, M.<br>Schmidt, P.K. Hurley, K. Cherkaoui | High-K<br>HGang                            | Diagnostics&Yield 2009                                                                            | Warsaw, Poland,<br>June 2009                                 | invited             | Done |
| 242. | Variability in Nanoscale CMOS and Nanowires                                                                 | A. Asenov                                                                                                                 | UoG                                        | NANOSIL Workshop at ESSDERC                                                                       | Sept 09 Athens                                               | Invited             | Done |
| 243. | Statistical variability and compact model strategies                                                        | A. Asenov                                                                                                                 | UoG                                        | ECS Meeting                                                                                       | Sept 09 Vienna                                               | Invited             | Done |
| 244. | Statistical variability: a roadblock for future scaling                                                     | A. Asenov                                                                                                                 | UoG                                        | INSIGHT                                                                                           | April 09 Napa                                                | Invited             | Done |
| 245. | Static and Low Frequency Noise Characterization of FinFET Devices                                           | K. Bennamane, T. Boutchacha, G. Ghibaudo, M. Mouis, N. Collaert                                                           | INPG/FMNT,<br>IMEC                         | Ultimate Integration on Silicon<br>Conference (ULIS'2009)                                         | March 18-20,<br>2009, Aachen<br>(DE)                         | Oral                | Done |
| 246. | Full-3D real-space treatment of surface roughness in double gate MOSFETs                                    | C. Buran, M. G. Pala, S. Poli, M. Mouis                                                                                   | INPG/FMNT,<br>IUNET                        | Ultimate Integration on Silicon<br>Conference (ULIS'2009)                                         | March 18-20,<br>2009, Aachen                                 | Oral                | Done |
| 247. | Full-3D real-space simulation of surface-roughness effects in double gate MOSFETs                           | C. Buran, M.G. Pala, S. Poli and M.<br>Mouis                                                                              | INPG/FMNT,<br>IUNET                        | 13th International Workshop on<br>Computational Electronics<br>(IWCE'2009)                        | May 27-29, 2009,<br>Beijing (China)                          | Oral                | Done |
| 248. | Full-3D Real-Space Simulation of Surface-<br>Roughness Effects in Double-Gate MOSFETs                       | C. Buran, M.G. Pala, M. Mouis, S. Poli                                                                                    | FMNT-INPG,<br>IUNET                        | IWCE 2009,                                                                                        | 27-29 May 2009<br>Page(s):1 - 4                              |                     | Done |
| 249. | Special effects in triple gate MOSFETs fabricated on silicon-on-insulator (SOI)                             | Y. Bae, K-I. Na, S. Cristoloveanu, W. Xiong, C.R. Cleavelin, JH. Lee                                                      | INPG/FMNT                                  | 2009 International Semiconductor<br>Conference (CAS 2009), Volume<br>1, Page(s):51 - 56           | October 12-14,<br>2009, Sinaia<br>(Romania)                  | Oral                | Done |
| 250. | Backscattering coefficient in gate-all-around 3C-SiC nanowire FETs                                          | K. Rogdakis, S. Poli, E. Bano, K.<br>Zekentes, M.G. Pala                                                                  | FMNT/INPG,<br>IUNET                        | IEEE NANO 2009                                                                                    | 26-30 July 2009,<br>Genoa (Italy)                            | Oral                | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 86 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 251. | Low-temperature measurements on Germanium-<br>on-Insulator pMOSFETs: evaluation of the<br>background doping level and modeling of the<br>threshold voltage dependence | W. Van Den Daele, E. Augendre, K. Romanjek, C. Le Roeyr, L. Clavelier, J–F. Damlencourt, E. Guiot, B. Ghyselen, S. Cristoloveanu                                                                      | INRG/FMNT,<br>CEA-LETI       | 14th Int. Symposium on Silicon on Insulator Technology and Devices, 215th ECS Meeting          | San Francisco,<br>USA (25–29 mai<br>2009)                  | Oral   | Done |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------|------|
| 252. | Scalability of MSD memory effect.                                                                                                                                     | A. Hubert, S. Ccristoloveanu, M. Bawedin, T. Ernst                                                                                                                                                    | INPG/FMNT,<br>CEA-LETI       | 10th Int. Conference on Ultimate Integration of Silicon (ULIS'09)                              | Aachen,<br>Germany, (18–20<br>mars 2009)                   | Oral   | Done |
| 253. | Study of Si Nanowires Growth by CVD-VLS and Physical Properties                                                                                                       | T. Baron, F. Dhalluin, S. Bassem, B. Salhi, H. Abed, A. Potie, M. Panabière, S. Decossas, M. Kogelschatz, L. Montès, F. Oehler, P. Gentile, N. Pauc, M. Den Hertog, J. Rouvière, P. Noe and P. Ferret | INPG, LETI                   | 216th ECS Meeting                                                                              | October 4 -<br>October 9, 2009 ,<br>Vienna, Austria        | Oral   | Done |
| 254. | Electrical Characterization of Silicon Nanowires FET                                                                                                                  | B. Salem, H. Abed, F. Dhalluin, M. Panabière, T. Baron, P. Noe, F. Oelher, N. Pauc and P. Gentile                                                                                                     | INPG, LETI                   | 216th ECS Meeting                                                                              | October 4 -<br>October 9, 2009 ,<br>Vienna, Austria        | Oral   | Done |
| 255. | Reverse graded virtual substrates for strained Ge devices                                                                                                             | D. R. Leadley, V.A. Shah, A. Dobbie and M. Myronov                                                                                                                                                    | Warwick                      | UK Semiconductors 2009                                                                         | July 1-2, 2009,<br>Sheffield, UK                           | Oral   | Done |
| 256. | Characterisation of Strained Ge Epitaxial Layers<br>Grown by RPCVD on Reverse Graded Si0.2Ge0.8<br>Relaxed Buffers                                                    | V.H. Nguyen, A. Dobbiew, M. Myronov,<br>V.A. Shah, X-C. Liu and D.R. Leadley                                                                                                                          | Warwick                      | Institute of Physics Condensed<br>Matter and Materials Physics<br>Conference                   | Warwick, Dec 17-<br>19 (2009).                             | Poster | Done |
| 257. | TEM analysis of Ge-on-Si MOSFET structures with HfO2 dielectric for high performance PMOS device technology                                                           | DJ Norris, T Walther, AG Cullis, M<br>Myronov, A Dobbie, T Whall, EHC<br>Parker, DR Leadley, B De Jaeger, W<br>Lee, M Meuris, J Watling and A Asenov                                                  | Warwick,<br>IMEC,<br>Glasgow | Microscopy of Semiconducting<br>Materials 16 (2009) [Journal of<br>Physics: Conference Series] | Oxford, UK, March<br>2009                                  | Poster | Done |
| 258. | Epitaxial growth of compressive strained Ge layers on reverse linearly graded virtual substrate by RP-CVD                                                             | M. Myronov, A. Dobbie, V.A. Shah and D.R. Leadley                                                                                                                                                     | Warwick                      | E-MRS 2009,                                                                                    | Strasbourg,<br>France, June 8-<br>12, (2009)               | Oral   | Done |
| 259. | Effect of Si1-xGex Growth Rate on the Threading Dislocation Density in Fully Relaxed Si1-xGex/Si(100) Virtual Substrates Grown at High Temperature by RP-CVD          | A. Dobbie, M. Myronov, X. Liu, E. H. C. Parker and D. R. Leadley                                                                                                                                      | Warwick                      | E-MRS 2009,                                                                                    | Strasbourg,<br>France, June 8-<br>12, (2009)               | Poster | Done |
| 260. | Low temperature epitaxial growth of compressive strained Ge layers on reverse linearly graded virtual substrate by RP-CVD                                             | M. Myronov, A. Dobbie, V.A. Shah and D.R. Leadley                                                                                                                                                     | Warwick                      | ICSI-6: 6th Int. Conf. Silicon<br>Epitaxy and Heterostructures,                                | Los Angeles,<br>California, USA,<br>May 17 – 22,<br>(2009) | Oral   | Done |
| 261. | Accurate effective mobility extraction in SOI MOS transistors                                                                                                         | S.M. Thomas, T.E. Whall, E.H.C.<br>Parker, D.R. Leadley, R.J.P Lander, G.<br>Vellianitis, J.R. Watling                                                                                                | Warwick                      | ULIS 2009                                                                                      | Aachen, Germany<br>(2009)                                  | Poster | Done |
| 262. | Si/SiO2 Quantum Well Solar Cells Based on<br>Lateral Charge Carrier Transport                                                                                         | B. Berghoff, S. Suckow, R. Rölver, B. Spangenberg, H. Kurz                                                                                                                                            | RWTH                         | 24th European Photovoltaic Solar<br>Energy Conference and Exhibition<br>(EU PVSEC)             | Hamburg, 21-<br>24.09.<br>2009                             | poster | Done |
| 263. | Comparison of measurement and simulation of charge transport in selective energy contacts based on Si quantum dots                                                    | S. Suckow, B. Berghoff, B.<br>Spangenberg, H. Kurz                                                                                                                                                    | RWTH                         | 24th European Photovoltaic Solar<br>Energy Conference and Exhibition<br>(EU PVSEC)             | Hamburg, 21-<br>24.09.<br>2009                             | poster | Done |

| NANOSIL   | Final Report | January 2008 to March 2011 | 87 / 107 |
|-----------|--------------|----------------------------|----------|
| THITTODIL | i mai report | January 2000 to March 2011 | 0//10/   |

| 264. | Quantum wells based on Si/SiOx stacks for nano-<br>structured absorbers                                        | B. Berghoff, S. Suckow, R. Rölver, B. Spangenberg, H. Kurz, A. Sologubenko J. Mayer                                                                                                                                                                                                                                                      | RWTH                                                | E-MRS Spring Meeting,<br>Symposium B: Inorganic and<br>Nanostruc-tured Photovoltaics | Strasbourg,<br>June 8-12, 2009.                              | Oral | Done |
|------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------|
| 265. | Geometric broadening in resonant tunneling through Si quantum dots                                             | S. Suckow, B. Berghoff, B.<br>Spangenberg, H. Kurz                                                                                                                                                                                                                                                                                       | RWTH                                                | E-MRS Spring Meeting<br>Symposium B: Inorganic and<br>Nanostruc-tured Photovoltaics  | Strasbourg,<br>June 8-12, 2009.                              | Oral | Done |
| 266. | Characterization of dopant segregated Schottky barrier source/drain contacts                                   | V. Gudmundsson, PE. Hellström, SL. Zhang and M. Östling                                                                                                                                                                                                                                                                                  | KTH                                                 | ULIS2009                                                                             | 19-20 March,<br>Aachen                                       | Oral | Done |
| 267. | "Performance analysis of graphene bilayer transistors through tight-binding simulations", pp. 85-88.           | G. Fiori, G. lannaccone                                                                                                                                                                                                                                                                                                                  | IUNET                                               | 13th International Workshop on Computational Electronics                             | 2009 Bejing                                                  | Oral | Done |
| 268. | "Model of 1D Schottky barrier transistor operating far from equilibrium".                                      | P. Michetti, G. lannaccone                                                                                                                                                                                                                                                                                                               | IUNET                                               | IEEE NANO 2009                                                                       | 2009 Genoa                                                   | Oral | Done |
| 269. | "Physical insights on nanoscale FETs based on epitaxial graphene on Si".                                       | M. Cheli, P. Michetti, G. lannaccone                                                                                                                                                                                                                                                                                                     | IUNET                                               | ESSDERC 2009                                                                         | 2009 Athens                                                  | Oral | Done |
| 270. | "Analytical and TCAD-supported Approach to<br>Evaluate Intrinsic Process Variability in Nanoscale<br>MOSFETs". | V. Bonfiglio, G. lannaccone                                                                                                                                                                                                                                                                                                              | IUNET                                               | ESSDERC 2009                                                                         | 2009 Athens                                                  | Oral | Done |
| 271. | "Shot noise analysis in quasi one-dimensional Field<br>Effect Transistors"                                     | A. Betti, G. Fiori, G. lannaccone                                                                                                                                                                                                                                                                                                        | IUNET                                               | 20th International Conference on Noise and Fluctuations                              | 2009 Pisa                                                    | Oral | Done |
| 272. | "Comparison of advanced transport models for<br>nanoscale MOSFETs"                                             | P. Palestri, C. Alexander, A. Asenov, G. Baccarani, A. Bournel, M. Braccioli, B. Cheng, P. Dollfus, A. Esposito, D. Esseni, A. Ghetti, C. Fiegna, G. Fiori, V. Aubry-Fortuna, G. Iannaccone, A. Martinez, Majkusiak B., S. Monfray, S. Reggiani, C. Riddet, J. Saint-Martin, E. Sangiorgi, A. Schenk, L. Selmi, L. Silvestri, J. Walczak | IUNET<br>UGLAS<br>IMEP<br>ETHZ<br>STM<br>TUW<br>L2M | 10th International Conference on Ultimate Integration of Silicon                     | 2009 Aachen                                                  | Oral | Done |
| 273. | "Physical insights on graphene nanoribbon mobility through atomistic simulations"                              | A. Betti, G. Fiori, G. lannaccone                                                                                                                                                                                                                                                                                                        | IUNET                                               | International Electron Device<br>Meeting                                             | 2009<br>Baltimore                                            | Oral | Done |
| 274. | Revised analysis of Coulomb scattering limited mobility in biaxially strained silicon MOSFETs                  | F. Driussi and D.Esseni                                                                                                                                                                                                                                                                                                                  | IUNET-UD                                            | European Solid State Device<br>Research Conference<br>(ESSDERC)                      | Athens, Sept.<br>2009                                        | oral | Done |
| 275. | Experimental and physics-based modeling assessment of strain induced mobility enhancement in FinFETs           | N. Serra, F. Conzatti, D. Esseni, M. De<br>Michielis, P. Palestri, L. Selmi, S.<br>Thomas, T.E. Whall, E.H.C. Parker,<br>D.R. Leadley, L. Witters, A. Hikavyy,<br>M.J. H"ytch, F. Houdellier, E. Snoeck,<br>T.J. Wang, W.C. Lee, G. Vellianitis,<br>M.J.H. van Dal, B. Duriez, G. Doornbos<br>and R.J.P. Lander                          | IUNET-UD                                            | Electron Device Meeting (IEDM), paper 4.2                                            | Dec. 2009                                                    | oral | Done |
| 276. | Drain / Substrate Coupling Impact on DIBL of Ultra<br>Thin Body and Box SOI MOSFETs with undoped<br>Channel    | S. Burignat, MK. Md Arshad, D. Flandre,<br>V. Kilchytska, F. Andrieux, O.Faynot P.<br>Scheiblin and JP. Raskin                                                                                                                                                                                                                           | UCL, CEA-<br>LETI                                   | ESSDERC 2009 Conference                                                              | September 14-19,<br>Athènes, Grèce<br>(2009),<br>pp.141-144. | Oral | Done |

| 1 17 11 1 | OSIL Filial Report                                                                                                       | January 2006 to March 2                                                                                                                                       | 011                            | 00 / 10 /                                                                        |                                               |        |      |
|-----------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------|------|
| 277.      | Substrate effects in sub-32 nm Ultra Thin SOI MOSFETs with Thin Buried Oxide,.                                           | S. Burignat, D. Flandre, V. Kilchytska, F. Andrieux, O.Faynot and JP. Raskin                                                                                  | UCL, CEA-<br>LETI              | EuroSOI Conference 2009,                                                         | January 19-21,<br>Göteborg,<br>Sweden (2009)  | Oral   | done |
| 278.      | Transconductance and Mobility Behaviors in UTB SOI MOSFETs with Standard and Thin BOX,                                   | T. Rudenko, S. Burignat, V. Kilchytska,<br>S. Burignat, JP. Raskin, F. Andrieu, O.<br>Faynot, A. Nazarov, V. Lysenko, D.<br>Flandre                           | UCL, CEA-<br>LETI, ISP<br>Kiev | EuroSOI Conference 2009,                                                         | January 19-21,<br>Göteborg,<br>Sweden (2009)  | Oral   | Done |
| 279.      | Continuous compact model for MuGFETs simulations.                                                                        | J. Alvarado, V. Kilchytska, D; Flandrea,<br>J. Conde, M. Estrada, A. Cerdeira,                                                                                | UCL                            | 16th Inernational Conf; on Mixed<br>Design of Integrated Circuits and<br>Systems | 25-27 June 2009,<br>Lodz, Poland              |        | Done |
| 280.      | Self-aligned single-electron memory fabrication based on Si/SiGe/Si heterostructures                                     | X. Tang, F. Ravaux, E. Dubois, E.<br>Kasper, A. Karmous, N. Reckinger, JP.<br>Raskin                                                                          | UCL, IEMN,<br>USTUTT           | 35th International Conference on Micro & Nano Engineering (MNE),                 | 28 Sept 1 Oct.<br>2009 Ghent,<br>Belgium.     | poster | Done |
| 281.      | TEM characterization of poly-silicon and silicide fin fabrication processes of FinFETs                                   | J. Ratajczak, A. Aszcz, A. Czerwinski, J. Katcki, X. Tang, N. Reckinger, D. Yarecha, G. Larrieu, E. Dubois                                                    | UCL, IEMN                      | Polish National Conference -<br>Nano2009                                         | June 22-26,<br>2009, Warsaw                   | poster | Done |
| 282.      | Issues associated to rare earth silicide integration in ultra thin FD SOI Schottky barrier nMOSFETs                      | G. Larrieu, D. Yarekha, E. Dubois, N. Breil, N. Reckinger, X. Tang, A. Halimaoui                                                                              | UCL, IEMN                      | 215th ECS Meeting                                                                | 24-29 may 2009<br>in San Francisco,<br>USA    | oral   | Done |
| 283.      | UHV Fabrication of the Ytterbium Silicide as<br>Potential low Schottky Barrier S/D Contact Material<br>for n-type MOSFET | D. Yarekha, G. Larrieu, N. Breil, E.<br>Dubois, S. Godey, X. Wallart, C. Soyer,<br>D. Remiens, N. Reckinger, X. Tang, A.<br>Laszcz, J. Ratajczak, A Halimaoui | UCL, IEMN                      | 215th ECS Meeting                                                                | 24-29 may 2009<br>in San Francisco,<br>USA    | poster | Done |
| 284.      | High-Frequency Performance of Dopant-<br>Segregated NiSi S/D SOI SB-MOSFETs                                              | C. Urban, M. Emam, C. Sandow, QT.<br>Zhao, A. Fox, JP. Raskin, S. Mantl                                                                                       | UCL, FZJ                       | ESSDERC 2009 Conference                                                          | September 14-19,<br>Athènes, Grèce<br>(2009)  | oral   | Done |
| 285.      | Realization of vertical silicon nanowire networks with an ultra high density by top-down approach                        | X.L. Han, G. Larrieu, E. Dubois                                                                                                                               | ISEN-IEMN                      | International Conference on Nanoscience and Technology                           | 1-3 Sep 09,<br>Shanghai, China                | Oral   | Done |
| 286.      | Monte Carlo study of ambipolar transport and quantum effects in carbon nanotube transistors                              | H. Nha Nguyen, S. Retailleau, D. Querlioz, A. Bournel, P. Dollfus                                                                                             | UPS                            | SISPAD 2009                                                                      | September 9-11,<br>2009, San Diego,<br>USA    | poster | Done |
| 287.      | Effects of edge roughness on the spin-dependent transport in armchair graphene nanoribbon structures                     | V. Hung Nguyen, V. Nam Do, A.<br>Bournel, V. Lien Nguyen, P. Dollfus                                                                                          | UPS                            | EDISON 16                                                                        | August 20-24,<br>2009, Montpellier,<br>France | poster | Done |
| 288.      | Decoherence due to electron-phonon scattering in semiconductor nanodevices                                               | D. Querlioz, J. Saint-Martin, P. Dollfus                                                                                                                      | UPS                            | IWCE 2009                                                                        | May 27-29 2009,<br>Beijing, China             | oral   | Done |
| 289.      | Sequential transport in a two-dot device                                                                                 | A. Valentin, S. Galdin-Retailleau, P. Dollfus                                                                                                                 | UPS                            | IWCE 2009                                                                        | May 27-29 2009,<br>Beijing, China             | oral   | Done |
| 290.      | Wigner Monte Carlo simulation of CNTFET:<br>Comparison between semi-classical and quantum<br>transport                   | H. Nha Nguyen, D. Querlioz, S. Galdin-<br>Retailleau, A. Bournel, P. Dollfus                                                                                  | UPS                            | IWCE 2009                                                                        | May 27-29 2009,<br>Beijing, China             | oral   | Done |
| 291.      | Effect of access resistance on apparent mobility reduction in nano-MOSFET                                                | K. Huet, J. Saint-Martin, A. Bournel, D. Querlioz, P. Dollfus                                                                                                 | UPS                            | ULIS 2009                                                                        | March 18-20,<br>Aachen,<br>Germany            | oral   | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 89 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 292. | Impact of strain on p-DGMOS performance using full-band Monte Carlo simulation                                                 | V. Aubry-Fortuna, K. Huet, A. Bournel,<br>D. Rideau, C. Chassat, P. Dollfus                                                                                                                             | UPS                                             | ULIS 2009                                                                     | March 18-20,<br>Aachen,<br>Germany             | oral   | Done |
|------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|--------|------|
| 293. | Mobility measurements in Gd silicate/TiN SOI and sSOI n-MOSFETs                                                                | M. Schmidt, H.D.B. Gottlob, D. Buca, S. Mantl and H. Kurz                                                                                                                                               | AMO, FZ-<br>Jülich                              | International Semiconductor<br>Device Research Symposium<br>(ISDRS 2009)      | College Park,<br>MD, USA, Dec. 9-<br>11, 2009. | oral   | Done |
| 294. | Mobility Extraction of UTB n-MOSFETs down to 0.9 nm SOI thickness                                                              | M. Schmidt, M.C. Lemme, H.D.B.<br>Gottlob, H. Kurz, F. Driussi, L. Selmi                                                                                                                                | AMO,<br>IU.NET                                  | International Conference on<br>Ultimate Integration of Silicon<br>(ULIS 2009) | March 18-20,<br>2009 - Aachen,<br>Germany      | oral   | Done |
| 295. | Scaling potential and MOSFET integration of thermally stable Gd silicate dielectrics                                           | H.D.B. Gottlob, M. Schmidt, A. Stefani,<br>M.C. Lemme, H. Kurz, I.Z. Mitrovic,<br>W.M. Davey, S. Hall, M. Werner, P.R.<br>Chalker, K. Cherkaoui, P.K. Hurley, J.<br>Piscator, O. Engström, S.B. Newcomb | AMO,<br>LIVUNI,<br>Tyndall-<br>UCC,<br>Chalmers | Conference of Insulating Films on<br>Semiconductors (INFOS 2009)              | Cambridge, UK,<br>June 29 - July 01,<br>2009   | oral   | Done |
| 296. | Integration of Gd silicate / TiN gate stacks into SOI n-MOSFETs                                                                | M. Schmidt, H.D.B. Gottlob, A. Stefani, and H. Kurz                                                                                                                                                     | AMO                                             | Conference of Insulating Films on<br>Semiconductors (INFOS 2009)              | Cambridge, UK,<br>June 29 - July 01,<br>2009   | poster | Done |
| 297. | Platforms for planar & non-planar ultrathin silicon                                                                            | M. Schmidt, H.D.B. Gottlob, J. Bolten, T. Wahlbrink, T. Mollenhauer, M. Bückins, T.E. Weirich, F. Dorn, J. Mayer, H. Kurz                                                                               | AMO                                             | EUROSOI 2009                                                                  | Göteborg,<br>Sweden, Jan. 19-<br>21, 2009      | oral   | Done |
| 298. | Uniaxial strain relaxation in He-implanted (110) oriented SiGe layers                                                          | D. Buca, RA. Minamisawa, H. Trinkaus,<br>B. Holländer, V. Destefanis, JM.<br>Hartmann, S. Mantl                                                                                                         | FZJ                                             | International Conference on Silicon<br>Epitaxy and Hetero-structures          | Los Angeles May<br>17-22, 2009                 | oral   | Done |
| 299. | Performance enhancement of uniaxially-tensile strained Si NW-nFETs fabricated by lateral strain relaxation of SSOI             | Feste, S.F.; Knoch, J.; Habicht, S.;<br>Buca, D.; Zhao, Q.T.; S. Mantl                                                                                                                                  | FZJ                                             | ULIS 2009                                                                     | Aachen 18-20<br>March, 2009                    | oral   | Done |
| 300. | Strained and Unstrained Si Nanowire FETs                                                                                       | S.F. Feste, S. Habicht, Q.T. Zhao, D. Buca, and S. Mantl                                                                                                                                                | FZJ                                             | ESSDERC                                                                       | Athens, Greece<br>14-18 Sept 2009              | Oral   | Done |
| 301. | Investigation of Arsenic dopant segregation layers for scaled Schottky-Barrier MOSFETs                                         | Feste, SF; Urban, C; Knoch, J; Zhao, QT; Buca, D; Breuer, U; Mantl S                                                                                                                                    | FZJ                                             | E-MRS Spring Meeting 2009                                                     | Strasbourg, June 08-12, 2009                   | Poster | Done |
| 302. | Systematic study of SOI SB-MOSFETs with dopant segregation                                                                     | C. Urban, Q. T. Zhao, C. Sandow, S.<br>Lenk, S. Mantl                                                                                                                                                   | FZJ                                             | EUROSOI 2009                                                                  | Göteborg, Jan.19.<br>– 21, 2009                | Oral   | Done |
| 303. | Schottky Barrier Height tuning using Sb<br>Segregation                                                                         | C. Urban, Q. T. Zhao, C. Sandow, M.<br>Müller, S. Mantl                                                                                                                                                 | FZJ                                             | MAM 2009                                                                      | Grenoble,<br>Mar 8. – 9, 2009                  | Oral   | Done |
| 304. | High Performance Schottky Barrier MOSFETs on UTB SOI                                                                           | C. Urban, C. Sandow, QT. Zhao, S. Mantl                                                                                                                                                                 | FZJ                                             | ULIS 2009                                                                     | Aachen, March<br>18-20, 2009                   | Oral   | Done |
| 305. | Ultra thin Ni-silicides with low contact resistance on SOI and strained-SOI                                                    | L. Knoll, Q.T. Zhao, S. Habicht, C. Urban, B. Ghyselen, S. Mantl                                                                                                                                        | FZJ                                             | Proc. of Intern. Conf. Solid State<br>Dev. Mat.                               | Sendai, Japan,<br>Oct. 7-9, 2009               | Poster | Done |
| 306. | Modeling of piezoresistive coefficients in Si hole inversion layers                                                            | A. T. Pham, C. Jungemann, B. Meinerzhagen                                                                                                                                                               | TUBS                                            | Proceedings of ULIS, Aachen (Germany), 2009                                   |                                                | oral   | Done |
| 307. | Simulation of mobility variation and drift velocity enhancement due to uniaxial stress combined with biaxial strain in Si PMOS | A. T. Pham, C. Jungemann, B.<br>Meinerzhagen                                                                                                                                                            | TUBS                                            | Proceedings of IWCE-13, pp. 45-48,<br>Beijing (China), 2009                   |                                                | oral   | Done |

| That report tunian 2000 to maren 2011 | NANOSIL | Final Report | January 2008 to March 2011 | 90 / 107 |
|---------------------------------------|---------|--------------|----------------------------|----------|
|---------------------------------------|---------|--------------|----------------------------|----------|

| 308. | MBE Growth of Ge Quantum Dot Structures in Oxide Windows                                                                                             | A. Karmous, O. Kirfel, M. Oehme, E. Kasper, and J. Schulze                                 | USTUTT                  | E-MRS Symposium K:<br>Semiconductor Nanostructures towards                                                                    | June 8 - 12, 2009<br>Congress Center,            | Oral   | Don  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|------|
|      | Oxide Willidows                                                                                                                                      | nasper, and J. Schulze                                                                     |                         | Electronic and Optoelectronic Device<br>Applications II                                                                       | Strasbourg,<br>France                            |        |      |
| 309. | Charge pumping characterization of MOSFETs with HfSiON gate dielectric                                                                               | K. Jasinski, G. Gluszko, L. Lukasiak, A.<br>Jakubowski                                     | WUT                     | 14th Canadian Semiconductor<br>Technology Conf. Nano and Giga<br>Challenges in Electronics,<br>Photonics and Renewable Energy | Aug. 10-14, 2009<br>Hamilton, Canada             | poster | Done |
| 310. | Signal generator for extensive characterization of MOS devices                                                                                       | M. Iwanowicz, Z. Pióro, L. Lukasiak, A. Jakubowski                                         | WUT                     | 14th Canadian Semiconductor<br>Technology Conf. Nano and Giga<br>Challenges in Electronics,<br>Photonics and Renewable Energy | Aug. 10-14, 2009<br>Hamilton, Canada             | poster | Done |
| 311. | Charge pumping characterization of MOSFETs with SiO2/BaTiO3 as a gate stack                                                                          | G. Gluszko, P. Firek, L. Lukasiak,<br>J. Szmidt, A. Jakubowski                             | WUT                     | 8th Symp. Diagnostics & Yield :<br>Advanced Silicon Devices and<br>Technologies for the ULSI Era                              | June 22-24 2009,<br>Warszawa<br>(Poland)         | poster | Done |
| 312. | Silicon oxynitride layers fabricated by Plasma<br>Enhanced Chemical Vapor Deposition for CMOS<br>devices                                             | R. Mroczyński, R.B. Beck                                                                   | WUT                     | 216th Meeting of Electrochemical<br>Society – EuroCVD-17 and CVD-<br>17                                                       | October 4-9<br>2009, Vienna<br>(Austria)         | poster | Done |
| 313. | Reliability issues of double gate dielectric stacks based of hafnium dioxide (HfO2) layers for non-volatile semiconductor memory (NVSM) applications | R. Mroczyński, R.B. Beck                                                                   | WUT                     | 8th Symp. Diagnostics & Yield :<br>Advanced Silicon Devices and<br>Technologies for the ULSI Era                              | June 22-24 2009,<br>Warszawa<br>(Poland)         | poster | Done |
| 314. | High Frequency and Noise Compact Model of Gate-All-Around MOSFETs Including Quantum Effects                                                          | B. Nae, A. Lázaro, B. Iñiguez                                                              | URV                     | EUROSOI Workshop                                                                                                              | January 19-21<br>2009, Göteborg<br>(Sweden)      | Poster | Done |
| 315. | A High Frequency Compact Noise Model for<br>Double-Gate MOSFET Devices                                                                               | A. Lázaro, A. Cerdeira, B. Nae, M. Estrada, B. Iñiguez                                     | URV                     | 20th International Conference on Noise and Fluctuations                                                                       | June 14-19 2009,<br>Pisa (Italy)                 | Oral   | Done |
| 316. | 2D Physics-based Compact Model for Channel<br>Length Modulation in Lightly Doped DG FETs                                                             | M. Weidemann, A. Kloes, M. Schwarz,<br>B. Iñiguez                                          | URV                     | International Conference on Mixed<br>Design of Integrated Circuits<br>(MIXDES)                                                | June 25-27, Łódź<br>(Poland)                     | Oral   | Done |
| 317. | 2D physics-based compact model of channel length modulation for asymmetrically biased double-gate MOSFETs                                            | M. Weidemann, A. Kloes, M. Schwarz,<br>B. Iniguez                                          | URV                     | ESSDERC Fringe                                                                                                                | Sept. 14-19 2009,<br>Athens (Greece)             | Poster | Done |
| 318. | 2D analytical solution of potential in lightly doped Schottky barrier double-gate MOSFET                                                             | M. Schwarz, M. Weidemann, A.Kloes, B. Iñiguez                                              | URV                     | ESSDERC Fringe                                                                                                                | Sept. 14-19 2009,<br>Athens (Greece)             | Poster | Done |
| 319. | 2D Compact Modeling of the Threshold Voltage in Triple- and Pi-gate Transistors                                                                      | R. Ritzenthaler, F. Lime, and B. Iñiguez, O. Faynot, S. Cristoloveanu                      | URV, CEA-<br>LETI, INPG | International Semiconductor Device Research Conference (ISDRS 2009)                                                           | December 9-11,<br>College Park, MA<br>(USA)      | Poster | Done |
| 320. | Analytical Modeling of the Gate Tunneling Leakage for the Determination of Adequate High-K Dielectrics in 22 nm Double-Gate SOI MOSFETs              | G. Darbandy, R. Ritzenthaler, F. Lime, I. Garduño, M. Estrada, A. Cerdeira and B. Iñiguez. | URV                     | International Semiconductor Device Research Conference (ISDRS 2009)                                                           | December 9-11<br>2009, College<br>Park, MA (USA) | Oral   | Done |
| 321. | Two-Dimensional Model for the Potential Profile in a Short Channel Schottky Barrier DG-FET                                                           | M. Schwarz, M. Weidemann, A. Kloes,<br>B. Iñíguez                                          | URV                     | International Semiconductor Device Research Conference (ISDRS 2009)                                                           | December 9-11<br>2009, College<br>Park, MA (USA) | Poster | Done |

| 322. | Analysis and Modeling of the Pinch-Off Point in a Lightly Doped Asymmetrically Biased Double Gate MOSFET                                                             | M. Weidemann, A. Kloes, M. Schwarz,<br>B. Iñiguez                 | URV                           | International Semiconductor<br>Device Research Conference<br>(ISDRS 2009) | Dec. 9-11 2009,<br>College Park, MA<br>(USA) | Poster | Done |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------|----------------------------------------------|--------|------|
| 323. | High frequency compact noise modelling of Multi-<br>Gate MOSFETs                                                                                                     | A. Lázaro, A. Cerdeira, B. Nae, M.<br>Estrada and B. Iñiguez      | URV                           | MOS-AK Workshop                                                           | April 3 2009,<br>Frankfurt-Oder<br>Germany   | Poster | Done |
| 324. | Modeling of the subthreshold characteristics of<br>Triple-Gate Transistors: impact of the channel<br>dimensions and back-gate bias                                   | R. Ritzenthaler, F. Lime and B. Iñiguez                           | URV                           | MOS-AK Workshop                                                           | September 18<br>2009, Athens<br>(Greece)     | Poster | Done |
| 325. | Wafer bonding strength increased by mobile ions.                                                                                                                     | Raeissi, Bahman; Sanz-Velasco, Anke;<br>Engström, Olof:           | Chalmes                       | EUROSOI 2009                                                              | Göteborg<br>January 19 -21,<br>2009          | Poster | Done |
| 326. | The influence of orientation and strain on the transport properties of sal Trigate nMOSFETs                                                                          | I.Tienda-Luna, A.Godoy, F.Ruiz,<br>F.Gamiz                        | UGR                           | ESSDERC                                                                   | Athens, Sept 209                             |        | Done |
| 327. | Effect of arbitrary orientation and strain on<br>Surrounding Gate Transistors                                                                                        | I.Tienda-Luna, A.Godoy, F.Ruiz, and F.Gamiz                       | UGR                           | International Workshop on Computational Electronics,                      | 2009 (Beijing,<br>China)                     |        | Done |
| 328. | A-RAM: Novel capacitor-less DRAM memory                                                                                                                              | N.Rodriguez, S.Cristoloveanu, F.Gamiz                             | UGR, INP,<br>LETI             | IEEE Inetrnational SOI<br>COnference                                      | San<br>FranciscoUSA                          |        | Done |
| 329. | Quantization Effects in Silicided and Metal Gate MOSFETs                                                                                                             | N.Rodriguez, F.Gamiz, R.Clerc,<br>C.Sampedro, A.Godoy, G.Ghibaudo | UGR, INPG                     | ULIS 2009                                                                 | March 2009<br>Aachen                         | oral   | Done |
| 330. | Comparison of the electrostatics of bulk and SOI trigate MOSFETs                                                                                                     | F.Garcia-Ruiz, A.Godoy, I.Tienda-Luna, F.Gamiz                    | UGR                           | Symp. Of Elecrochemical Society                                           | San Francisco                                |        | Done |
| 331. | A model for robust electrostatic design of nanowire ETs with arbitrary polygonal cross sections                                                                      | Luca de Michielis,<br>Luca Selmi<br>Adrian M. Ionescu             | EPFL/<br>IUNET (Uni<br>Udine) | ESSDERC 2009                                                              | Athens, Sept. 14,<br>2009                    | Oral   | Done |
| 332. | Improvement of the Effective Mass Approximation for Silicon Nanowires                                                                                                | A. Esposito, M. Frey, and A. Schenk                               | ETHZ                          | Colloque Numérique Suisse                                                 | University of<br>Basel, April 24,<br>2009    | poster | Done |
| 333. | Boundary Conditions for Incoherent Quantum<br>Transport                                                                                                              | M. Frey, A. Esposito, and A. Schenk                               | ETHZ                          | International Workshop on<br>Computational Electronics (IWCE-<br>13)      | Beijing, China,<br>May 27-29, 2009           |        | Done |
| 334. | Impact of Strain on the Performance of high-k/metal replacement gate MOSFETs                                                                                         | X. Wang, S. Roy, and A. Asenov                                    | UoG                           | Ultimate Integration on Silicon (ULIS 2009                                | Aachen<br>Germany, March<br>18-20, 2009      |        | Done |
| 335. | Efficient simulation of 6s VT distribution due to random discrete dopants                                                                                            | D. Reid, C. Millar, G. Roy, S. Roy and A. Asenov                  | UoG                           | Ultimate Integration on Silicon (ULIS 2009                                | Aachen<br>Germany, March<br>18-20, 2009      | Oral   | Done |
| 336. | Estimate of Dielectric Density using Spectroscopic Ellipsometry                                                                                                      | W. Davey, O. Buiu, I. Mitrovic, M. Werner, S. Hall, P. Chalker    | Livuni                        | INFOS 2009                                                                | Cambridge UK<br>June 2009                    | oral   | Done |
| 337. | 3D analysis of strain in an electrically measured strained SiGe MOSFET                                                                                               | SH Olsen et al                                                    | UNEW                          | Microscopy of Semiconducting Materials (MSM)                              | Oxford, UK,<br>March 2009                    | oral   | Done |
| 338. | A design methodology for maximizing the voltage gain of strained Si MOSFETs using the thickness of the silicon-germanium strain relaxed buffer as a design parameter | OM Alatise et al                                                  | UNEW                          | ISDRS                                                                     | Washington DC,<br>USA, December<br>2009      | oral   | Done |

| 1 1/2 1.1 1 | OSIL Tillal Report                                                                                                                                                      | January 2006 to March 2                                                                                                       | 011                     | 72 / 10 /                                                                        |                                             |        |      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|---------------------------------------------|--------|------|
| 339.        | Strain characterization of Si wires                                                                                                                                     | L Sanderson, P Dobrosz, SH Olsen, SJ<br>Bull, S Mantl and D Buca                                                              | UNEW, FZJ               | International Conference on<br>Metallurgical Coatings and Thin<br>Films (ICMCTF) | San Diego, USA,<br>April 2009               | oral   | Done |
| 340.        | Investigation of oxidation-induced strain in a top-<br>down Si nanowire platform                                                                                        | M Najmzadeh, D Bouvet, A Ionescu, P<br>Dobrosz and SH Olsen                                                                   | UNEW,<br>EPFL           | INFOS                                                                            | Cambridge, UK<br>2009                       | oral   | Done |
| 341.        | Silicon nanowires with lateral uniaxial tensile stress profiles for high electron mobility gate-all-around MOSFETs                                                      | M Najmzadeh, L De Michielis, D Bouvet,<br>P Dobrosz, SH Olsen and A Ionescu                                                   | UNEW,<br>EPFL           | Micro- Nano Engineering                                                          | Ghent, Belgium<br>2009                      | oral   | Done |
| 342.        | Capturing intrinsic parameter fluctuations using the PSP compact model                                                                                                  | B. Cheng, D. Dideban, N. Moezi, C.<br>Millar, G. Roy, X. Wang, S.Roy, A.<br>Asenov                                            | UoG                     | DATE 2010                                                                        |                                             |        | Done |
| 343.        | Analytical Modeling of Direct Tunnelling Current through SiO2/high-k Gate Stacks for the Determination of Suitable High-k Dielectrics for Nanoscale Double-Gate MOSFETs | G. Darbandy, R. Ritzenthaler, F. Lime,<br>S. I. Garduño, M. Estrada,<br>A. Cerdeira, and B. Iñiguez                           | URV                     | EUROSOI Workshop                                                                 | January 25-27<br>2010, Grenoble<br>(France) | poster | Done |
| 344.        | An analytical compact model for Schottky-Barrier Double Gate MOSFETs                                                                                                    | M. Balaguer, B. Iñiguez, J. B. Roldán                                                                                         | URV, UGR                | EUROSOI Workshop                                                                 | January 25-27<br>2010, Grenoble             | poster | Done |
| 345.        | A 2D analytical model of threshold voltage for Pi-gate FinFET transistors                                                                                               | R. Ritzenthaler, M. Tang, O. Faynot, F.<br>Lime, F. Prégaldiny, C. Lallement, S.<br>Cristoloveanu, and B. Iñiguez             | URV, CEA-<br>LETI, INPG | EUROSOI Workshop                                                                 | January 25-27<br>2010, Grenoble<br>(France) | oral   | Done |
| 346.        | Substrate bias effects in MuGFETs                                                                                                                                       | C.W. Lee, A. Borne, I. Ferain, A.<br>Afzalian, R. Yan, N. Dehdashti-Akhavan,<br>P. Razavi, J.P. Colinge                       | Tyndall,<br>INPG, UCL   | EUROSOI 2010                                                                     | Grenoble, Jan<br>2010                       | Poster | Done |
| 347.        | 3D Simulation of RTS Amplitude in Accumulation-<br>Mode and Inversion-Mode<br>Trigate SOI MOSFETs                                                                       | Ran Yan, Ailbhe Cullen, Aryan Afzalian,<br>Isabelle Ferain, Chi-Woo Lee, Nima<br>Dehdashti, Pedram Razavi<br>and J.P. Colinge | Tyndall, UCL            | EUROSOI 2010                                                                     | Grenoble, Jan<br>2010                       | Poster | Done |
| 348.        | Comparison of Breakdown Voltage in Bulk and SOI FinFETs                                                                                                                 | P. Razavi, R. Duane, R. Yan, I. Ferain,<br>N. Dehdashti-Akhavan, R. Yu, C.W.<br>Lee, J.P. Colinge                             | Tyndall                 | EUROSOI 2010                                                                     | Grenoble, Jan<br>2010                       | Oral   | Done |
| 349.        | Backgate bias and stress level impact on Giant Piezoresistance effect in thin silicon films and nanowires                                                               | V. Passi, F. Ravaux, E. Dubois, JP.<br>Raskin                                                                                 | UCL<br>IEMN             | IEEE MEMS                                                                        | 23-28 January<br>2010<br>Hongkong           | Poster | Done |
| 350.        | Gate-edge charges related effects and performance degradation in advanced multiple-gate MOSFETs                                                                         | V. Kilchytska, J. Alvarado, N. Collaert,<br>R. Rooyakers, S. Put, C. Claeys, D.<br>Flandre                                    | UCL, IMEC               | EuroSOI 2010                                                                     | January 2010,<br>Grenoble                   | Oral   | Done |

| uary 2008 to March 2011 93 / 107 |
|----------------------------------|
| ın                               |

| 351. | What is the killing advantage of multiple-gate SOI MOSFET?                                                              | F. Balestra                                                                                                                                                                                                                                    | INPG-IMEP                        | 5th EUROSOI Workshop                                                                                                                                 | Goteborg,<br>Sweden, January<br>2009               | Invited,<br>panel<br>session | Done |
|------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|------|
| 351. | Status and trends in Nanoscale Si-based devices and materials                                                           | F. Balestra                                                                                                                                                                                                                                    | Coordi-nator                     | 9th International Conference on<br>Solid-State and Integrated-Circuit<br>Technology                                                                  | Beijing, China<br>(October 20-23,<br>2008)         | Invited                      | Done |
| 352. | New semiconductor Nanodevices                                                                                           | F. Balestra                                                                                                                                                                                                                                    | Coordi-nator                     | International School on the Physics of Semiconducting Compounds 2008                                                                                 | Jaszowiec,<br>Poland, June<br>2008                 | Invited                      | Done |
| 353. | NANOSIL Network of Excellence: Silicon-based nanostructures and nanodevices for long-term nanoelectronics applications. | F. Balestra, E. Parker, D. Leadley, S. Mantl, E. Dubois, O. Engstrom, R. Clerc, S. Cristoloveanu, H. Kurz, J.P. Raskin, M. Lemme, A. Ionescu, E. Kasper, A. Karmous, M. Baus, B. Spangenberg, M. Ostling, E. Sangiogi, G. Ghibaudo, D. Flandre | All                              | European Materials Research<br>Society (E-MRS 2008),<br>Symposium J                                                                                  | Strasbourg,<br>France (26-30<br>Mai 2008)          | Invited                      | Done |
| 354. | Mobility of strained and unstrained short channel MOSFETs: New insight by magnetoresistance                             | M. Cassé, F. Rochette, N. Bhouri, F.<br>Andrieu, K. Romanjek, D.K. Maude, M.<br>Mouis, G. Reimbold, F. Boulanger                                                                                                                               | CEA/LETI,<br>INPG-IMEP           | Symposium on VLSI Technology<br>(VLSI 2008), Proceedings IEEE.<br>pp. 170-1. Piscataway, NJ, USA                                                     | June 17-20, 2008,<br>Honolulu, Hawaï<br>(USA)      | Oral                         | Done |
| 355. | Emerging nanotechnology                                                                                                 | T. Baron, B. Salem, F. Dhalluin, P.<br>Gentile, N. Pauc, M. Den Hertog, J.L.<br>Rouvière, P. Mur, B. De Salvo, P.<br>Ferret, J. Dufourcq, S. Bodnar                                                                                            | FMNT-LTM,<br>CEA                 | 38th European Solid-State Device<br>Research Conference (ESSDERC)                                                                                    | Edinburgh, UK<br>(15-19 Sept 2008)                 | Invited                      | Done |
| 356. | The Ge condensation technique: a solution for planar SOI/GeOI co-integration for advanced CMOS technologies?            | B. Vincent, J.F. Damlencourt, Y. Morand, A. Pouydebasque, C. Le Royer, L. Clavelier, N. Dechoux, P. Rivallini, T. Nguyen, S. Cristoloveanu, Y. Campidelli, D. Rouchon, M. Mermoux, S. Deleonibus, D. Bensahel, T. Billon                       | STM, CEA-<br>LETI, INPG-<br>IMEP | European Materials Research<br>Society (E-MRS 2008),<br>Symposium J. Proceedings in<br>Materials Science in<br>Semiconductor Processing,<br>Elsevier | Strasbourg,<br>France (May 26-<br>30, 2008)        | Invited                      | Done |
| 357. | A Mobility Extraction Method for 3D Multichannel Devices                                                                | C. Dupré, T. Ernst, E. Bernard, B.<br>Guillaumot, N. Vulliet, P. Coronel, T.<br>Skotnicki, S. Cristoloveanu, G.<br>Ghibaudo and S. Deleonibus                                                                                                  | CEA/LETI,<br>STM, INPG-<br>IMEP  | 38th European Solid-State Device<br>Research Conference<br>(ESSDERC'08)                                                                              | Edinburgh, UK<br>(15-19 Sept 2008)                 | Oral                         | Done |
| 358. | Characterization methods for nanodevices.                                                                               | S. Cristoloveanu                                                                                                                                                                                                                               | INPG-IMEP                        | 38th European Solid-State Device<br>Research Conference<br>ESSDERC'08                                                                                | Edinburgh, UK<br>(15-19 Sept 2008)                 | Invited                      | Done |
| 359. | Introduction of diamond into advanced FDSOI CMOS                                                                        | J-P. Mazellier, O. Faynot, F. Andrieu, S. Cristoloveanu, S. Deleonibus                                                                                                                                                                         | CEA-LETI,<br>INPG-IMEP           | 4th EUROSOI Workshop                                                                                                                                 | Cork, Ireland (23-<br>25 janvier 2008)             | Oral                         | Done |
| 360. | Ge diffusion during Ge-condensation process                                                                             | C.S. Beer, R.J.H. Morris, T.E. Whall,<br>E.H.C. Parker and D.R. Leadley                                                                                                                                                                        | Warwick                          | ISTDM                                                                                                                                                | Taiwan, (May, 2008)                                | Poster                       | Done |
| 361. | Ge-On-Insulator substrates formed by Ge condensation technique: fabrication, modeling and characterization.             | J.F. Damlencourt, B. Vincent, C. Le<br>Royer, P. Rivallin, E. Martinez, M.C.<br>Roure, Y. Campidelli, D. Rouchon, T.<br>Nguyen, S. Cristoloveanu, Y. Morand, S.<br>Descombes, L. Clavelier                                                     | Grenoble<br>INP                  | International Conference of<br>Electronic Materials, sponsored by<br>Int. Union of Materials Research<br>Society (ICEM-IUMRS 2008)                   | Sydney, Australia<br>(28 juillet - 1 août<br>2008) | Invited                      | Done |

| NANOSIL Final Report January 2008 to March 2011 94 / 10 / | NANOSIL | Final Report | January 2008 to March 2011 | 94 / 107 |
|-----------------------------------------------------------|---------|--------------|----------------------------|----------|
|-----------------------------------------------------------|---------|--------------|----------------------------|----------|

| 362. | Quantum transport in nanowire metal-oxide-<br>semiconductor transistors: influence of dielectric<br>confinement                     | M. Bescond, M. Lannoo, F. Michelini, N. Cavassilas, M. G. Pala                                                             | INPG, CNRS       | ICPS                                                                                     | Rio de Janeiro,<br>July 27- August 1,<br>2008 | Poster               | Done |
|------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|------|
| 363. | Full 3D Real-Space NEGF Simulation of Transport and Magnetotransport in Si-Nanowire FETs                                            | C. Buran, M. G. Pala, M. Bescond and M. Mouis                                                                              | INPG, CNRS       | ESSDERC                                                                                  | Rio de Janeiro,<br>July 27- August 1,<br>2008 | Poster               | Done |
| 364. | Reverse graded SiGe/Ge/Si heterostructures for high-composition virtual substrates.                                                 | V.A.Shah, D.R.Leadley, D.Fulgoni,<br>J.Parsons, E.H.C.Parker                                                               | Warwick          | E-MRS                                                                                    | Strasbourg (May 2008)                         | Oral                 | Done |
| 865. | Channel Backscattering Characteristics of High<br>Performance Germanium pMOSFETs                                                    | A. Dobbie, B. De Jaeger, M. Meuris,<br>T.E. Whall, E.H.C. Parker and D.R.<br>Leadley                                       | Warwick,<br>IMEC | ULIS                                                                                     | Udine, Italy<br>(March, 2008)                 | Oral                 | Done |
| 366. | Anomalous Ge diffusion effects during Ge-<br>condensation                                                                           | C.S. Beer, T.E. Whall, R.J.H. Morris,<br>E.H.C. Parker and D.R. Leadley                                                    | Warwick          | ULIS                                                                                     | Udine, Italy<br>(March, 2008)                 | Poster               | Done |
| 367. | The role of interface states in the low temperature mobility of hafnium-oxide gated Ge-pMOSFETs and the effect of a hydrogen anneal | C.S. Beer, T.E. Whall, E.H.C. Parker,<br>D.R. Leadley, B. De Jaeger, G.<br>Nicholas, P. Zimmerman and M. Meuris            | Warwick,<br>IMEC | ULIS                                                                                     | Udine, Italy<br>(March, 2008)                 | Oral                 | Done |
| 368. | Relaxation of Strained Silicon on Si0.5Ge0.5 Virtual Substrates                                                                     | J. Parsons, R.J.H. Morris, D.R. Leadley and E.H.C. Parker                                                                  | Warwick          | ULIS                                                                                     | Udine, Italy<br>(March, 2008)                 | Poster               | Done |
| 69.  | Confinement and Transport in Silicon Based<br>Quantum Structures                                                                    | B. Berghoff, R. Rölver, B. Spangenberg,<br>D. Bätzner, H. Kurz, A. Dimyati. A.<br>Sologubenkoo, J. Mayer                   | RWTH             | 33rd IEEE Photovoltaic Specialists Conference,                                           | San Diego, 11.05-<br>16.05.<br>(2008)         | oral                 | Done |
| 70.  | Towards Schottky-Barrier Source/Drain MOSFETs                                                                                       | M. Östling, V. Gudmundsson, PE.<br>Hellström, B.G. Malm, Z. Zhang, SL.<br>Zhang                                            | KTH              | 2008 9TH International<br>Conference on Solid-State and<br>Integrated-Circuit Technology | October 20-23,<br>Beijing, China              | Invited presentation | Done |
| 71.  | Substrate impact on sub-32 nm Ultra Thin SOI MOSFETs with Thin Buried Oxide                                                         | S. Burignat, D. Flandre, V. Kilchytska, F.<br>Andrieux, O. Faynot and JP. Raskin                                           | UCL, CEA         | EuroSOI 2009                                                                             | Jan. 2009<br>Gothenburg                       | oral                 | Done |
| 72.  | Transconductance and Mobility Behaviors in UTB SOI MOSFETs with Standard and Thin BOX                                               | T. Rudenko, V. Kilchytska, S. Burignat,<br>J.–P. Raskin, F. Andrieu, O. Faynot, A.<br>Nazarov, V.S. Lysenko and D. Flandre | UCL, CEA         | EuroSOI 2009                                                                             | Jan. 2009<br>Gothenburg                       | oral                 | Done |
| 73.  | Impact of channel doping on Schottky barrier height and investigation on p-SB MOSFETs performance                                   | G. Larrieu, E. Dubois, D. Yarekha, N.<br>Breil, N. Reckinger, X. Tang, J.<br>Ratajczak, A. Laszcz                          | IEMN<br>UCL      | e-MRS Spring Meeting                                                                     | 26-30 May 2008<br>Strasbourg                  | Oral                 | Done |
| 74.  | Selective etching of implanted silicon-dioxide in hydrofluoric acid                                                                 | V. Passi, A. Lecestre, E. Dubois, J.P.<br>Raskin                                                                           | UCL<br>IEMN      | 34th Conference on Micro and Nano Technology                                             | September 15-18,<br>2008, Athens              | Oral                 | Done |
| 75.  | Investigation on the Platinum Silicide Schottky Barrier Height Modulation using a Dopant Segregation Approach                       | N. Breil, A. Halimaoui, E. Dubois, E. Lampin, Ludovic Godet, George Papasouliotis, Guilhem Larrieu                         | IEMN             | MRS-Spring Meeting, Mater. Res. Soc                                                      | 24-28 April 2008<br>San Francisco             | oral                 | Done |
| 76.  | Impact of channel doping on Schottky barrier height and investigation on p-SB MOSFETs performance                                   | G. Larrieu, E. Dubois, D. Yarekha, N.<br>Breil, N. Reckinger, X. Tang, J.<br>Ratajczak, A. Laszcz                          | IEMN<br>UCL      | e-MRS Spring Meeting                                                                     | 26-30 May 2008<br>Strasbourg                  | Oral                 | Done |
| 377. | Selective etching of implanted silicon-dioxide in hydrofluoric acid                                                                 | V. Passi, A. Lecestre, E. Dubois, J.P.<br>Raskin                                                                           | UCL<br>IEMN      | 34th Conference on Micro and Nano Technology                                             | September 15-18,<br>2008, Athens              | Oral                 | Done |
| 378. | DC and RF characteristics of a 60 nm FinFET for a wide temperature range                                                            | J. C. Tinoco, B. Parvais, A. Mercha, S. Decoutere, J-P Raskin                                                              | UCL, IMEC        | EUROSOI – 2008                                                                           | Tyndall January<br>23-25, 2008                | Oral                 | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 95 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 379. | Revised RF extraction methods for deep submicron MOSFETs"                                                                                      | J. C. Tinoco and JP. Raskin,                                                                                                                                          | UCL                                     | 38th European Microwave Week<br>2008                                              | Amsterdam,<br>October 28-31,<br>2008, pp. 127-<br>130.      | Oral    | Done |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|---------|------|
| 380. | RF-extraction methods for MOSFET series resistances: a fair comparison                                                                         | J. C. Tinoco and JP. Raskin,                                                                                                                                          | UCL                                     | Seventh International Caribbean<br>Conference on Devices, Circuits<br>and Systems | Cancun, Mexico,<br>April 28-30, 2008,<br>paper 64, pp. 1-6. | Oral    | Done |
| 381. | Optimizing FinFET Geometry and Parasitics for RF applications                                                                                  | A. Kranti, JP. Raskin and G. A. Armstrong,                                                                                                                            | UCL                                     | IEEE International SOI<br>Conference, SOI'2008,                                   | New York, USA,<br>October 6-9,<br>2008, pp. 123-<br>124.    | Oral    | Done |
| 382. | Impact of temperature reduction and channel engineering on the linearity of FD SOI nMOSFETs                                                    | M. de Souza1, D. Flandre, J. A. Martino,<br>E. Simoen, C. Claeys, M. A. Pavanello;                                                                                    | UCL, IMEC                               | EuroSOI 2009                                                                      | Jan. 2009,<br>Gothenburg,                                   | Oral    | Done |
| 383. | Experimental and Theoretical Analysis of Hole Transport in Uniaxially Strained pMOSFETs                                                        | K. Huet, M. Feraille, D. Rideau,<br>R. Delamare V. Aubry-Fortuna,<br>M. Kasbari, S. Blayac, C. Rivero,<br>A. Bournel, C. Tavernier, P. Dollfus,<br>H. Jaouen          | UPS, STM                                | ESSDERC 2008                                                                      | 15-19 Sept.,<br>Edinburgh, UK                               | oral    | Done |
| 384. | Wigner Monte Carlo approach to quantum transport in nanodevices                                                                                | P. Dollfus, D. Querlioz, J. Saint-Martin,<br>V. Nam Do, A. Bournel                                                                                                    | UPS                                     | SISPAD 2008                                                                       | 9-11 Sept.,<br>Hakone Japan                                 | invited | Done |
| 385. | On the Wigner Formalism of Quantum Transport in Semi-conductor Nanodevices                                                                     | P. Dollfus, D. Querlioz, J. Saint-Martin,<br>V. Nam Do, A. Bournel                                                                                                    | UPS                                     | AMSN 2008                                                                         | 15-21 Sept., Nha<br>Trang, Viet Nam                         | invited | Done |
| 386. | Electron-phonon interaction in silicon quantum dots                                                                                            | A. Valentin, J. Sée, S. Galdin-Retailleau,<br>P. Dollfus                                                                                                              | UPS                                     | ULIS 2008                                                                         | 13-14 March,<br>Udine, Italy                                | oral    | Done |
| 387. | Particle Monte Carlo approach to semi-classical and quantum transport in CNTFET within a multiscale simulation framework from atoms to circuit | P. Dollfus, S. Galdin-Retailleau,<br>H. Cazin d'Honincthun, H. Nha Nguyen,<br>D. Querlioz, A. Bournel                                                                 | UPS                                     | CCTN 08                                                                           | 28 June, 2008<br>Mont-pellier,<br>France                    | invited | Done |
| 388. | Static and dynamic performance of CNTFETs using particle Monte Carlo simulation                                                                | H. Nha Nguyen, H. Cazin d'Honincthun,<br>P. Dollfus, A. Bournel, S. Galdin-<br>Retailleau                                                                             | UPS                                     | NT 08                                                                             | 29 Jun 4 Jul.,<br>Mont-pellier,<br>France                   | poster  | Done |
| 389. | Electronic transport and spin polarization effects in single graphene barrier structures                                                       | V. Nam Do, V. Hung Nguyen, P. Dollfus,<br>A. Bournel                                                                                                                  | UPS                                     | NT 08                                                                             | 29 Jun 4 Jul.,<br>Mont-pellier,<br>France                   | poster  | Done |
| 390. | Effect of edge disorder on the bandgap of graphene nanoribbons                                                                                 | D. Querlioz, Y. Apertet, A. Valentin,<br>K. Huet, A. Bournel, S. Galdin-<br>Retailleau, P. Dollfus                                                                    | UPS                                     | NT 08                                                                             | 29 Jun 4 Jul.,<br>Mont-pellier,<br>France                   | poster  | Done |
| 391. | Platforms for planar & non-planar ultrathin silicon                                                                                            | M. Schmidt, H.D.B. Gottlob, J. Bolten, T. Wahlbrink, T. Mollenhauer, M. Bückins, T.E. Weirich, F. Dorn, J. Mayer, H. Kurz                                             | AMO                                     | EUROSOI 2009                                                                      | 19.01.2009<br>Gotenburg,<br>Sweden                          | oral    | Done |
| 392. | Leakage current effects on C-V plots of high-k MOS capacitors                                                                                  | Y. Lu, S. Hall, L. Z. Tan, I. Z. Mitrovic,<br>W. M. Davey, B. Raeissi, O. Engstrom,<br>K. Cherkaoui, S. Monaghan, P. K.<br>Hurley, H.D.B. Gottlob, and M. C.<br>Lemme | LIVUNI,<br>Chalmers,<br>AMO,<br>Tyndall | Workshop on Dielectrics in<br>Microelectronics<br>WoDiM 2008                      | June 23 – 25,<br>2008 in Bad<br>Saarow (Berlin),<br>Germany | poster  | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 96 / 107 |
|---------|--------------|----------------------------|----------|
|---------|--------------|----------------------------|----------|

| 393. | Quest for an Optimal Gadolinium Silicate Gate<br>Dielectric Stack                                                                      | I.Z. Mitrovic, M. Werner, W.M. Davey, S. Hall, P.R. Chalker, H.D.B. Gottlob, M.C. Lemme, O. Engstrom, K. Cherkaoui and P.K. Hurley | LIVUNI,<br>Chalmers,<br>AMO,<br>Tyndall | 39th IEEE Semiconductor<br>Interface Specialists Conference<br>SISC 2009                                             | December 11-13,<br>2008<br>San Diego, (CA),<br>USA | poster             | Done |
|------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|------|
| 394. | Small-Signal Compact Modelling of Multi-Gate MOSFETs                                                                                   | B. Iñiguez                                                                                                                         | URV                                     | IEEE EDS Mini-Colloquium on<br>Advanced Electron Devices<br>Technology & Modeling                                    | Cambridge (UK),<br>September 12<br>2008            | Invited<br>lecture | Done |
| 395. | Porous anodic alumina thin films on Si as masking layers for silicon surface nanostructuring and as templates for nanostructure growth | A. G. Nassiopoulou, V. Gianneta, F. Zacharatos, M. Kokonou, M. Hauffman                                                            | IMEL                                    | 1st IC4N-2008: International<br>Conference from Nanoparticles<br>and Nanomaterials to Nanodevices<br>and Nanosystems | Halkidiki, Greece,<br>16-18 June 2008              | Invited            | Done |
| 396. | Structural, chemical and light emission properties of very thin anodic silicon films fabricated by short single current pulses         | S. Gardelis, A. G. Nassiopoulou, F. Petraki, S. Kennou, I. Tsiaoussis, N. Frangis                                                  | IMEL                                    | XXIV Panhellenic Conference on<br>Solid State Physics and Materials<br>Science                                       | Heraklion, Crete,<br>September 21-24,<br>2008      | Invited            | Done |
| 397. | Advanced compact modeling techniques of nanoscale Multi-Gate MOSFETs                                                                   | B. Iñiguez, A. Lázaro, O. Moldovan, B. Nae, A. Cerdeira                                                                            | URV                                     | IEEE Lester Eastman Conference                                                                                       | Newark<br>(Delaware, USA),<br>August 5-7 2008      | Invited<br>lecture | Done |
| 398. | Compact Modeling Techniques in Thin Film SOI MOSFETs                                                                                   | B. Iñiguez, D. Flandre                                                                                                             | URV, UCL                                | MOS-AK Workshop                                                                                                      | Edinburgh (UK),<br>September 19<br>2008            | Invited<br>lecture | Done |
| 399. | Finite element Simulations of parasitic capacitances related to multiple-gate field-effect transistors Architectures                   | O. Moldovan, D. Lederer, B. Iñiguez, J.<br>P. Raskin                                                                               | URV,<br>Tyndall,<br>UCL                 | 8th IEEE Topical Meeting on<br>Silicon Monolithic Integrated<br>Circuits in RF Systems (SiRF<br>2008)                | Orlando (FL,<br>USA), January<br>23-25 2008        | Poster             | Done |
| 400. | Compact Charge and Capacitance Modeling of<br>Undoped Ultra-Thin-Body SOI MOSETs                                                       | O. Moldovan, F. A. Chaves, D. Jimenez, B. Iñiguez                                                                                  | URV                                     | EUROSOI 2008 Workshop                                                                                                | Cork (Ireland),<br>January 23-25<br>2008           | Poster             | Done |
| 401. | DC, RF and Noise Compact Model for FinFETs Including Quantum Effects                                                                   | B. Nae, A. Lázaro, B. Iñiguez, F. García,<br>M. Tienda-Luna, A. Godoy                                                              | URV, UGR                                | Conference on Design of Circuits and Integrated Systems (DCIS)                                                       | Grenoble<br>(France),<br>November 12-14<br>2008    | Oral               | Done |
| 402. | Study of Ballisticity in SOI Nano-MOSFETs at Very Low Drain Bias                                                                       | C. Sampedro, F. Gámiz, A. Godoy, S. Cristoloveanu and I. M. Tienda-Luna                                                            | UGR, INPG                               | EUROSOI 2008 Workshop                                                                                                | Cork (Ireland),<br>January 23-25<br>2008           | Oral presentation  | Done |
| 403. | Equivalent Oxide Thickness of SOI-GAA devices                                                                                          | F. J. García Ruiz, I.M. Tienda-Luna,<br>L.Donetti, A.Godoy, F. Gámiz                                                               | UGR                                     | EUROSOI 2008 Workshop                                                                                                | Cork (Ireland),<br>January 23-25<br>2008           | Poster             | Done |
| 404. | In-depth characterization of quantum effects in SOI MOSFETs for modeling purposes                                                      | J. B. Roldán, M. Balaguer, A. Godoy, F.<br>G. Ruiz, F. Gámiz                                                                       | UGR                                     | EUROSOI 2008 Workshop                                                                                                | Cork (Ireland),<br>January 23-25<br>2008           | Poster             | Done |
| 405. | Impact of the top surface density of states on the characteristics of ultrathin SOI pseudo-MOSFETs                                     | N. Rodriguez, S. Cristoloveanu, T. Nguyen, F. Gámiz                                                                                | UGR, INPG                               | EUROSOI 2008 Workshop                                                                                                | Cork (Ireland),<br>January 23-25<br>2008           | Poster             | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 97 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 406. | Enhanced Electron Transport by Carrier Overshoot in Ultrascaled Double Gate MOSFETs  N. Rodriguez, L.Donetti, C.Sampedro, F.Martinez-Carricondo, F.Gamiz |                                                                                                        | UGR, INPG                                  | ULIS-2008, The 9th International<br>Conference On Ultimate<br>Integration On Silicon | Udine (Italy),<br>March 12-14<br>2008                       | Poster  | Done |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|---------|------|
| 407. | Fully self-consistent k p solver and Monte Carlo simulator for hole inversion layers                                                                     | L.Donetti, F.Gamiz, A.Godoy,<br>N.Rodriguez                                                            | UGR, INPG                                  | ESSDERC-2008, European Solid<br>State Device Research<br>Conference                  | Edinburgh (UK),<br>September 15-19                          | Oral    | Done |
| 408. | Simulation of CMOS inverters based on the novel<br>Surrounding Gate Transistors. A Verilog-A<br>implementation                                           | A.Roldán, J.B.Roldán, F.Gamiz                                                                          | UGR                                        | MOS-AK Workshop                                                                      | Edinburgh (UK),<br>September 19                             | Poster  | Done |
| 409. | A Revisited Pseudo-MOSFET Model for Ultrathin SOI Films                                                                                                  | N.Rodriguez, S.Cristoloveanu, F.Gamiz                                                                  | UGR, INPG                                  | 2008 IEEE International SOI<br>Conference                                            | New Palz, NY<br>(USA), October 6-<br>9                      | Poster  | Done |
| 410. | Gd silicate: A High-k Dielectric Compatible with High Temperature Annealing,                                                                             |                                                                                                        |                                            | Workshop on Dielectrics in<br>Microelectronics (WoDiM 2008)                          | June 23 – 25,<br>2008 in Bad<br>Saarow (Berlin),<br>Germany | Oral    | Done |
| 411. | A generalized methodology for oxide leakage current metric,                                                                                              | O. Engström, J. Piscator, B. Raeissi, P. K. Hurley, K. Charkaoui, S,Hall, M.C.Lemme and H.D.B. Gottlob | Chalmers,<br>Tyndall,<br>Liverpool,<br>AMO | Ultimate Integration on Silicon<br>Conference (ULIS08),                              | March 2008,<br>Udine                                        | Poster  | Done |
| 412. | Comprehensive study of InAs/GaAs quantum dots by means of complementary methods                                                                          | M. Kaczmarczyk, O. Engström, J.<br>Piscator, M. Kaniewska, B. Surma, S.<br>Lin and A. R. Peaker,       | ITE,<br>Chalmers                           | 9th Exmatec,                                                                         | June 2008,<br>Lodz                                          | Poster  | Done |
| 413. | Method for identifying confined electron states in quantum dot structures                                                                                | M. Kaczmarczyk, O. Engström and M. Kaniewska                                                           | ITE,<br>Chalmers                           | 9th Exmatec                                                                          | June 2008,<br>Lodz                                          | Poster  | Done |
| 414. | Metastable behaviorof 1 eV trap in InAs/GaAs quantum dot structures                                                                                      | G. Zaremba, O. Engström, M. Kaniewska and M. Kaczmarczyk                                               | ITE,<br>Chalmers                           | 9th Exmatec,                                                                         | June, 2008, Lodz                                            | Poster  | Done |
| 415. | Characterization of deep elvels and quantum confined energy levels in InAs/ GaAs quantum dot structures by electrical methods                            | M. Kaniewska, O. Engström, M. Kaczmarczyk and G. Zaremba                                               | ITE,<br>Chalmers                           | ICCE 16, Kunming, China                                                              | July 2008                                                   | Oral    | Done |
| 416. | Deep level transient spectroscopy in quantum dot characterization,                                                                                       | O. Engström and M. Kaniewska                                                                           | Chalmers,<br>ITE                           | Villa Conference on Interaction among Nanostructures                                 | February 2008,<br>Orlando, Florida                          | Oral    | Done |
| 417. | Multiphonon capture of electrons at high-k-silicon interfaces                                                                                            | ure of electrons at high-k-silicon  O. Engström, B. Raeissi and J. Piscator                            |                                            | Gordon Conference                                                                    | August,2008<br>New London,<br>New Hampshire                 | Poster  | Done |
| 418. | Electron traps at HfO2/SiOx interfaces                                                                                                                   | B. Raeissi, Y. Y. Chen, J. Piscator, Z. H. Lai and O. Engström                                         | Chalmers                                   | ESSDERC 2008                                                                         | September 2008,<br>Edinburgh                                | Oral    | Done |
| 419. | Future high-k gate stack materials                                                                                                                       | O. Engström                                                                                            | Chalmers                                   | Tutorial given at ESSDERC 08.                                                        | September 2008,<br>Edinburgh                                | Invited | Done |
| 420. | High-k dielectrics and metal gates                                                                                                                       | O. Engström                                                                                            | Chalmers                                   | MIGAS'08,                                                                            | July, 2008,<br>Autrans, France                              | Invited | Done |
| 421. | Small slope switches                                                                                                                                     | A.M. Ionescu                                                                                           | EPFL                                       | Nanosil workshop @ ESDERC 2008                                                       | September 18th,<br>Edinburg                                 | oral    | Done |

| NANOSIL | Final Report | January 2008 to March 2011 | 98 / 107 |
|---------|--------------|----------------------------|----------|
|         |              |                            |          |

| 422. | Determination of Physical Parameters for<br>HfO2/SiOx/TiN MOSFET Gate Stacks by Electrical<br>Characterization and Reverse Modeling        | S. Monaghan, P. K. Hurley, K.<br>Cherkaoui, M. A. Negara, and A.<br>Schenk                                                                                       | ETHZ,<br>Tyndall                  | ULIS'2008                                         | Udine, Italy, 12 -<br>14 March 2008                                                         | oral             | Done |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|------|
| 423. | Advanced simulation of statistical variability and reliability in nano CMOS transistors                                                    | A. Asenov, S. Roy, A. R. Brown, G. Roy,<br>C. Alexander, C. Riddet, C. Millar, B.<br>Cheng, A. Martinez, N. Seoane, D. Reid,<br>M. F. Bukhori, X. Wang, U. Kovac | GU                                | IEDM                                              | 15 Dec<br>San Francisco                                                                     | Invited          | Done |
| 424. | Fabrication and characterisation of strained Si heterojunction bipolar transistors on virtual substrates                                   | S. Persson, M. Fjer, E. Escobedo-<br>Cousin, G. Malm, YB. Wang, PE.<br>Hellström, M. Östling, E. Parker, S.H.<br>Olsen and A.G. O'Neill                          | UNEW,<br>KTH,<br>Warwick          | IEDM                                              | Dec 08,<br>San Francisco                                                                    |                  | Done |
| 425. | Piezomobility Description of Strain-Induced Mobility                                                                                       | A. O'Neill, Y. L. Tsang, B. J. Gallacher,<br>S.H. Olsen                                                                                                          | UNEW                              | ICSICT                                            | Oct 08, Beijing                                                                             | Invited paper    | Done |
| 426. | Strain engineering for high mobility channels                                                                                              | S Olsen, ZA Tarawneh, J Varzgar, E<br>Escobedo-Cousin, R Agaiby, P Dobrosz,<br>A O'Neill, P-E Hellström, M Östling, E<br>Parker, R Loo and C Claeys              | UNEW,<br>KTH,<br>Warwick,<br>IMEC | ICST                                              | March 08,<br>Shanghai                                                                       | Invited<br>paper | Done |
| 427. | Nanoscale strain characterisation for ultimate CMOS and post-CMOS devices                                                                  | SH Olsen, P Dobrosz, RMB Agaiby, YL<br>Tsang, O Alatise, SJ Bull, AG O'Neill,<br>KE Moselund, AM Ionescu, P Majhi, D<br>Buca, S Mantl and H Coulson              | UNEW,<br>EPFL, FZJ                | EMRS                                              | May 08,<br>Strasbourg                                                                       | Invited<br>paper | Done |
| 428. | Gate leakage in high mobility substrates:<br>correlating macroscopic leakage with nanoscale<br>measurements                                | SH Olsen et al                                                                                                                                                   | UNEW,<br>IMEC                     | MRS Spring Meeting                                | April 09, San<br>Francisco                                                                  | Invited paper    | Done |
| 429. | Nanoscale strain characterisation in patterned SSOI structures                                                                             | P Dobrosz, SH Olsen, SJ Bull, YL<br>Tsang, RMB Agaiby, AG O'Neill, D<br>Buca, S Mantl, B Ghyselen                                                                | UNEW, FZJ,                        | EMRS                                              | May 08,<br>Strasbourg                                                                       |                  | Done |
| 430. | Nanometer scale strain profiling through Si/SiGe heterolayers                                                                              | RMB Agaiby, SH Olsen, P Dobrosz, H<br>Coulson, SJ Bull and AG O'Neill                                                                                            | UNEW                              | EMC                                               | June 08, Santa<br>Barbara                                                                   |                  | Done |
| 431. | Improved analog performance of strained Si n-<br>MOSFETs on thin SiGe strain relaxed buffers                                               | O Alatise, KSK Kwa, S Olsen and A<br>O'Neill                                                                                                                     | UNEW                              | ESSDERC                                           | Sept 08,<br>Edinburgh                                                                       |                  | Done |
| 432. | Investigation of strain profile optimization in gate-<br>all-around suspended silicon nanowire FET                                         | M Najmzadeh, K Moselund, A Ionescu,<br>P Dobrosz, S Olsen and A O'Neill                                                                                          | EPFL,<br>UNEW                     | ESSDERC                                           | Sept 08,<br>Edinburgh                                                                       |                  | Done |
| 433. | Top down and Bottom-up routes to nanoscale electronic components                                                                           | A Houlton, BR Horrocks, NG Wright, S<br>Olsen and A O'Neill                                                                                                      | UNEW                              | Intel European Research and Innovation Conference | Sept 08, Dublin                                                                             | Invited paper    | Done |
| 434. | Source-drain Engineering for Channel-limited PMOS Device Performance: Advances in Understanding of Amor-phization-Based Implant Techniques | NEB Cowern                                                                                                                                                       | UNEW                              | MRS Spring Meeting                                | April 08,<br>San Francisco                                                                  | Invited paper    | Done |
| 435. | Schottky source-drain contacts                                                                                                             | E. Dubois                                                                                                                                                        | IEMN-ISEN                         | MIGAS'08                                          | International<br>Summer School<br>on Advanced<br>Microelectronics,<br>28.06 – 4.07.<br>2008 | Invited          | Done |

**Section B** Part B1

|                                                      | TEMPLATE B1: LIST OF APPLICATIONS FOR PATENTS, TRADEMARKS, REGISTERED DESIGNS, ETC. |                                           |                                                                                                                                                           |                                                                                                                                                                        |                                       |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Type of IP<br>Rights <sup>7</sup> :                  | Confidential<br>Click on<br>YES/NO                                                  | Foreseen<br>embargo<br>date<br>dd/mm/yyyy | Application reference(s) (e.g. EP123456)                                                                                                                  | Subject or title of application                                                                                                                                        | Applicant (s) (as on the application) |  |  |  |  |
| Patent                                               | NO                                                                                  |                                           | N° EN 07 08351                                                                                                                                            | Elaboration process of horizontal nanowires                                                                                                                            | FMNT/CNRS, CEA                        |  |  |  |  |
| Patent                                               | NO                                                                                  |                                           | N° 08 02573                                                                                                                                               | Preparation process for nanowires elaboration                                                                                                                          | FMNT/CNRS, CEA                        |  |  |  |  |
| Patent                                               | NO                                                                                  |                                           | PCT/EP2009/050031                                                                                                                                         | Double gate memory device                                                                                                                                              | FMNT/CNRS, UCL                        |  |  |  |  |
| Patent                                               | NO                                                                                  |                                           | N° 09/52452                                                                                                                                               | Single-transistor RAM cell                                                                                                                                             | FMNT/GRENOBLE INP, UGR                |  |  |  |  |
| French<br>Patents and<br>international<br>extensions | YES                                                                                 |                                           | FR2930073 (A1) published 2009-<br>10-16  WO2009136095 (A2) 2009-11-12  WO2009136095 (A3) 2009-12-30  FR2930073 (B1) 2010-09-03  EP2279520 (A2) 2011-02-02 | Method for making complementary p<br>and n MOSFET transistors, electronic<br>device including such transistors, and<br>processor including at least one such<br>device | G. Larrieu, E. Dubois                 |  |  |  |  |

99 / 107

<sup>&</sup>lt;sup>7</sup> A drop down list allows choosing the type of IP rights: Patents, Trademarks, Registered designs, Utility models, Others.

Part B2

**NANOSIL** 

| Type of<br>Exploitable<br>Foreground <sup>8</sup> | Description<br>of<br>exploitable<br>foreground                      | Confidential<br>Click on<br>YES/NO | Foreseen<br>embargo<br>date<br>dd/mm/yyyy | Exploitable product(s) or measure(s)        | Sector(s) of application <sup>9</sup>                                                    | Timetable,<br>commercial<br>or any other<br>use | Patents or<br>other IPR<br>exploitation<br>(licences)                    | Owner & Other<br>Beneficiary(s)<br>involved                      |
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|
| Commercial<br>Exploitation of<br>R&D results      | Electronic<br>Semicondu<br>ctor<br>Characteriz<br>ation Tool<br>(a) | YES                                |                                           | Application<br>Software                     | Nano-Electronics.     DC to RF characterization     RF Noise     Non-linear Applications | 2011 – 2013                                     | Declaration of<br>Invention at<br>Universite<br>catholique de<br>Louvain | UCL:  EMAM M.  RODA NEVE C.  RASKIN JP  VANHOENACKER- JANVIER D. |
| General<br>advancement of<br>knowledge            | Ge<br>Quantum<br>Dot<br>Rectenna<br>(b)                             | NO                                 |                                           | mm wave<br>detector                         | 1. mm wave detection 2. Automotive safety systems 3. Energy harvesting                   |                                                 |                                                                          | USTUTT                                                           |
| General advancement of knowledge                  | QD Esaki<br>diodes (c)                                              | NO                                 |                                           | NDR Diodes                                  | RF oscillators     Memories                                                              |                                                 |                                                                          | USTUTT                                                           |
| General<br>advancement of<br>knowledge            | Local<br>strained<br>silicon<br>platform (d)                        | NO                                 |                                           | Local strained silicon platform fabrication | 1. High mobility MOSFETs 2. Low power electronics                                        |                                                 |                                                                          | USTUTT                                                           |

## **Explanation of the Exploitable Foreground:**

(a) The Electronic Semiconductor Characterization (ESC) tool is intended to provide a unique environment for a complete characterization flow for semiconductor devices (active or passive). The characterization flow includes dc and high frequency characterization modules based on small-signal equivalent circuits and direct extraction methods. It also includes non-linear behavior study as well as RF noise characterization based on different RF noise models and extraction routines. In a first step, this tool is targeting academic research centers. In a next step, industrial facilities should be considered as potential clients for the tool. The project is planned to reach its maturity in approximately four years. A declaration of invention at the Université catholique de Louvain (UCL) has been filed. Based on further advancement of the project, one or

<sup>19</sup> A drop down list allows choosing the type of foreground: General advancement of knowledge, Commercial exploitation of R&D results, Exploitation of R&D results via standards, exploitation of results through EU policies, exploitation of results through (social) innovation.

<sup>9</sup> Å drop down list allows choosing the type sector (NACE nomenclature): http://ec.europa.eu/competition/mergers/cases/index/nace\_all.html

101 / 107

more patents could be considered. The final product of this tool should include a wide variety of devices (active and passive) along with a quasicomplete library of models and extraction methods. Hence, a continuous research effort is needed along with the development of the tool. The tool in itself is a mean to develop new methodologies for characterizing devices, hence a closed loop research cycle could be established. A market research is currently effective, however, one client has already acquired a license of the tool (an academic research center in Germany) whereas two other research centers in Europe are showing their interest and might acquire a license in the near future as well. The preliminary market study conducted in order to receive the funding from the Walloon Region indicated a promising potential for this tool based on the absence of strong competition at the actual time.

- (b) Ge Quantum Dot Rectenna was developed at Stuttgart University (USTUTT, E. Kasper, A. Karmous, H. Xu). Its purpose is the detection of microwave radiation especially at mm-wave frequencies (30 GHz – 300 GHz). The high frequency radiation is converted into a direct current (DC) signal. This property may be implemented for energy harvesting to power wireless devices. It can be exploited by sensor manufacturers for battery-free remote sensors. It can also be employed by car manufacturing companies as a mm-wave detector in automotive safety systems for monitoring the surrounding of a vehicle. In order to meet each application requirements, further research efforts are necessary. For more specific applications, IPR exploitation is expected. The impact will depend on the additional research intensity. Internal (Stuttgart) activities will focus on patent survey for medical sensor applications.
- (c) QD Esaki diodes with room temperature negative differential resistance (NDR) have been demonstrated at Stuttgart University (USTUTT, E. Kasper, A. Karmous, M. Oehme). NDR I-V curve allows device applications in high frequency and multi-value storage. In high frequency, it can be implemented in RF oscillator circuit intended for RF power generation systems which can be used by car manufacturing companies in automotive safety systems. High frequency performance of an Esaki diode is limited by its high capacitance which is due to its very thin barrier width required for carrier tunneling. The inclusion of Ge dots layer(s) in the barrier region allows the diode capacitance decrease and therefore performance improvement. Another potential application is their use in SRAM memories by chip manufacturers. The use of two low power tunneling diodes in addition to one transistor instead of six transistor CMOS SRAM would allow the improvement of the power consumption and the increase of the integration density. Moreover, multivalued cells at no area penalty can be obtained by vertical stacking of several tunneling diodes. Further research efforts are necessary in order to optimize the diode structure and electrical characteristics. The impact will depend on the additional research intensity. First suggestions aim to an inclusion into a national (German) project cluster (Forschergruppe).
- (d) Local strained silicon (s-Si) platform was fabricated at Stuttgart University (USTUTT, E. Kasper, A. Karmous, M. Oehme). Its objective is to create s-Si layer on predefined areas on a Si/SOI wafer surface. Improved transistor performances can be obtained when s-Si is used as a channel material instead of bulk Si. However, different strain types and magnitudes are required for p-channels and n-channels in CMOS circuits. They can be obtained employing repeatedly the developed local strained silicon platform fabrication process. Local strained silicon platform can be implemented by microelectronic device manufacturer for high mobility MOSFETs and low power electronics. For low power electronic applications, further research efforts are necessary in order to extend the process used for bulk Si wafer to SOI by combining the developed bulk procedure with a SOI manufacturing. The impact will depend on the additional research intensity. Potential manufacturing routes will be elaborated and published in order to attract industrial interest.

## 4.3 Report on societal implications

| A     | General Information (completed automatically when Grant Agreement number entered.                                                                                                                                                                                                                                                                                     | lS  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Grar  | nt Agreement Number: 216171                                                                                                                                                                                                                                                                                                                                           |     |
| Title | of Project: NANOSIL                                                                                                                                                                                                                                                                                                                                                   |     |
| Vam   | e and Title of Coordinator:  DR Francis BALESTRA, project coordinator                                                                                                                                                                                                                                                                                                 |     |
| В     | Ethics Ethics                                                                                                                                                                                                                                                                                                                                                         |     |
| l. Di | d your project undergo an Ethics Review (and/or Screening)?                                                                                                                                                                                                                                                                                                           |     |
|       | If Yes: have you described the progress of compliance with the relevant Ethics Review/Screening Requirements in the frame of the periodic/final project reports?  ial Reminder: the progress of compliance with the Ethics Review/Screening Requirements should be ribed in the Period/Final Project Reports under the Section 3.2.2 'Work Progress and Achievements' | No  |
| 2.    | Please indicate whether your project involved any of the following issues (tick                                                                                                                                                                                                                                                                                       |     |
|       | EARCH ON HUMANS                                                                                                                                                                                                                                                                                                                                                       |     |
| •     | Did the project involve children?                                                                                                                                                                                                                                                                                                                                     | No  |
| •     | Did the project involve patients?                                                                                                                                                                                                                                                                                                                                     | No  |
| •     | Did the project involve persons not able to give consent?                                                                                                                                                                                                                                                                                                             | No  |
|       | Did the project involve adult healthy volunteers?                                                                                                                                                                                                                                                                                                                     | No  |
| •     | Did the project involve Human genetic material?                                                                                                                                                                                                                                                                                                                       | No  |
| •     | Did the project involve Human biological samples?                                                                                                                                                                                                                                                                                                                     | No  |
| •     | Did the project involve Human data collection?                                                                                                                                                                                                                                                                                                                        | No  |
| RESI  | EARCH ON HUMAN EMBRYO/FOETUS                                                                                                                                                                                                                                                                                                                                          |     |
| •     | Did the project involve Human Embryos?                                                                                                                                                                                                                                                                                                                                | No  |
| •     | Did the project involve Human Foetal Tissue / Cells?                                                                                                                                                                                                                                                                                                                  | No  |
| •     | Did the project involve Human Embryonic Stem Cells (hESCs)?                                                                                                                                                                                                                                                                                                           | No  |
| •     | Did the project on human Embryonic Stem Cells involve cells in culture?                                                                                                                                                                                                                                                                                               | No  |
| •     | Did the project on human Embryonic Stem Cells involve the derivation of cells from Embryos?                                                                                                                                                                                                                                                                           | No  |
| PRIV  | <ul> <li>Did the project involve processing of genetic information or personal data (eg. health, sexual lifestyle, ethnicity, political opinion, religious or philosophical conviction)?</li> </ul>                                                                                                                                                                   | No  |
|       | Did the project involve tracking the location or observation of people?                                                                                                                                                                                                                                                                                               | No  |
| RESI  | EARCH ON ANIMALS                                                                                                                                                                                                                                                                                                                                                      |     |
| •     | Did the project involve research on animals?                                                                                                                                                                                                                                                                                                                          | No  |
| •     | • Were those animals transgenic small laboratory animals?                                                                                                                                                                                                                                                                                                             | No  |
| •     | • Were those animals transgenic farm animals?                                                                                                                                                                                                                                                                                                                         | No  |
| •     | • Were those animals cloned farm animals?                                                                                                                                                                                                                                                                                                                             | No  |
|       | • Were those animals non-human primates?                                                                                                                                                                                                                                                                                                                              | No  |
| RESI  | EARCH INVOLVING DEVELOPING COUNTRIES                                                                                                                                                                                                                                                                                                                                  | 37  |
|       | Did the project involve the use of local resources (genetic, animal, plant etc)?  We describe the use of local resources (genetic, animal, plant etc)?                                                                                                                                                                                                                | No  |
|       | • Was the project of benefit to local community (capacity building, access to healthcare, education etc)?                                                                                                                                                                                                                                                             | No  |
| DUA   | L USE (                                                                                                                                                                                                                                                                                                                                                               |     |
|       | Describ having direct military use                                                                                                                                                                                                                                                                                                                                    | No  |
| •     | Research having direct military use                                                                                                                                                                                                                                                                                                                                   | 110 |

## C **Workforce Statistics**

Final Report

Workforce statistics for the project: Please indicate in the table below the number of 3. people who worked on the project (on a headcount basis).

| Type of Position                           | Number of Women | Number of Men |
|--------------------------------------------|-----------------|---------------|
| Scientific Coordinator                     |                 | 1             |
| Work package leaders                       | 1               | 5             |
| Experienced researchers (i.e. PhD holders) | 13              | 75            |
| PhD Students                               | 14              | 53            |
| Other                                      | 6               | 12            |

| 4. How many additional researchers (in companies and universities) were recruited specifically for this project? |    |
|------------------------------------------------------------------------------------------------------------------|----|
| Of which, indicate the number of men:                                                                            | 11 |

| D  | Gender A     | Aspects                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                       |                    |
|----|--------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| 5. | Did you      | carry out spec                                                                                           | fic Gender Equality Actions u                                                                                                                                                                                                                                                            | nder the project?                                                                               | 0                     | Yes<br>No          |
| 6. | Which o      | f the following a                                                                                        | nctions did you carry out and h                                                                                                                                                                                                                                                          | Not at all Ver                                                                                  | -                     |                    |
|    |              | Set targets to achi<br>Organise conferen                                                                 | ment an equal opportunity policy<br>eve a gender balance in the workforce<br>aces and workshops on gender<br>we work-life balance                                                                                                                                                        | 0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0                                                             | cuve                  |                    |
| 7. | Was the      | re a gender dim<br>of the research as, i<br>I and addressed?                                             | ension associated with the rese<br>for example, consumers, users, patier                                                                                                                                                                                                                 |                                                                                                 |                       |                    |
|    | 0            | Yes- please specia                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                 |                       |                    |
| E  | Synergi      | No<br>ies with Scien                                                                                     | ce Education                                                                                                                                                                                                                                                                             |                                                                                                 |                       |                    |
| 8. | •            | Nanosil con the objective school pupil (UPS)  Other syners  - Year  - Orga  - Best  - Orga  (GR)  - Stud | re working with students and/ofestivals and events, prizes/configuration for the description of the description of the ULIS 2009 confestudent award ULIS 2010 (FZJ) unisation and contribution to MICENOBLE INP) ent research within the course of TUTT) I Year Project students (LIVUNI | ional project ANR Narnanoscience and nanot the societal aspects of ided:  GAS International Sum | no-Ecolechnolognanosc | e with by to ience |
|    | 0            | No                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                 |                       |                    |
| 9. | <del>-</del> | project generate, DVDs)? Yes- please specify                                                             | The project generated Final Y Nanoscale CMOS: Innovative Characterization book edited                                                                                                                                                                                                    | ear Project posters at I                                                                        | LIVUN                 | I and the          |
|    | 0            | No                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                 |                       |                    |

| F                                                                                                                                                                                 | Interdisciplinarity                                                                                                                                                                                                                                                                              |                                                                                                                                                                         |                                                 |                |                                                                                                                                                                                      |                                   |         |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|-----------|
| 10.                                                                                                                                                                               | Which disciplines (see list below) are involved in your project?  • Main discipline 10: 2.2                                                                                                                                                                                                      |                                                                                                                                                                         |                                                 |                |                                                                                                                                                                                      |                                   |         |           |
|                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                | Associated discipl                                                                                                                                                      | line <sup>10</sup> : 2.3                        | 0              | Assoc                                                                                                                                                                                | ciated discipline <sup>10</sup> : |         |           |
| G                                                                                                                                                                                 | Engagi                                                                                                                                                                                                                                                                                           | ng with Civil                                                                                                                                                           | society and policy                              | y mal          | kers                                                                                                                                                                                 |                                   |         |           |
| 11a                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                | our project enga<br>inity? (if 'No', go                                                                                                                                 | age with societal actor<br>to Question 14)      | ors be         | yond                                                                                                                                                                                 | the research                      | •       | Yes       |
| 11b                                                                                                                                                                               | If yes, did you engage with citizens (citizens' panels / juries) or organised civil society (NGOs, patients' groups etc.)?  No Yes- in determining what research should be performed Yes - in implementing the research Yes, in communicating / disseminating / using the results of the project |                                                                                                                                                                         |                                                 |                |                                                                                                                                                                                      |                                   |         |           |
| 11c                                                                                                                                                                               | organise                                                                                                                                                                                                                                                                                         | so, did your pro                                                                                                                                                        | oject involve actors of the citizens and orga   | whose<br>nised | role i                                                                                                                                                                               | is mainly to society (e.g.        | 0       | Yes<br>No |
| 12.                                                                                                                                                                               | Did you e<br>organisat                                                                                                                                                                                                                                                                           | 0 0                                                                                                                                                                     | ernment / public boo                            | dies o         | r polic                                                                                                                                                                              | cy makers (including              | inter   | national  |
|                                                                                                                                                                                   | •<br>•                                                                                                                                                                                                                                                                                           | Yes - in implemen                                                                                                                                                       | ne research agenda<br>nting the research agenda |                |                                                                                                                                                                                      |                                   |         |           |
|                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                | Yes, in communic                                                                                                                                                        | eating /disseminating / usi                     | ng the         | results                                                                                                                                                                              | of the project                    |         |           |
| 13a                                                                                                                                                                               | Will the policy m                                                                                                                                                                                                                                                                                |                                                                                                                                                                         | e outputs (expertise                            | or sci         | entifi                                                                                                                                                                               | c advice) which could             | d be us | sed by    |
|                                                                                                                                                                                   | Yes – as a <b>primary</b> objective (please indicate areas below- multiple answers possible)  Yes – as a <b>secondary</b> objective (please indicate areas below - multiple answer possible)  No                                                                                                 |                                                                                                                                                                         |                                                 |                |                                                                                                                                                                                      |                                   |         |           |
| 13b                                                                                                                                                                               | If Yes, in                                                                                                                                                                                                                                                                                       | which fields?                                                                                                                                                           |                                                 |                |                                                                                                                                                                                      |                                   |         |           |
| Agriculture Audiovisual and Media Budget Competition Consumers Culture Customs Development Economic and Monetary Affairs Education, Training, Youth Employment and Social Affairs |                                                                                                                                                                                                                                                                                                  | Energy Enlargement Enterprise Environment External Relations External Trade Fisheries and Maritime Affai Food Safety Foreign and Security Policy Fraud Humanitarian aid | rs                                              |                | Human rights  Information Society Institutional affairs Internal Market Justice, freedom and security Public Health Regional Policy Research and Innovation Space Taxation Transport |                                   |         |           |

<sup>&</sup>lt;sup>10</sup> Insert number from list below (Frascati Manual).

| 13c If Yes, at which level?                                                                                                                                   |         |         |                                 |                       |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------------------------------|-----------------------|------------------|
| <ul> <li>Local / regional levels</li> </ul>                                                                                                                   |         |         |                                 |                       |                  |
| <ul><li>National level</li></ul>                                                                                                                              |         |         |                                 |                       |                  |
| <ul><li>European level</li></ul>                                                                                                                              |         |         |                                 |                       |                  |
| O International level                                                                                                                                         |         |         |                                 |                       |                  |
| H Use and dissemination                                                                                                                                       |         |         |                                 |                       |                  |
| 14. How many Articles were published/accepted peer-reviewed journals?                                                                                         | d for   | publ    | ication in                      | 230                   |                  |
| To how many of these is open access <sup>11</sup> provided?                                                                                                   | )       |         |                                 | 1                     |                  |
| How many of these are published in open access journ                                                                                                          | ials?   |         |                                 | 1                     |                  |
| How many of these are published in open repositories                                                                                                          | ?       |         |                                 | 1                     |                  |
| To how many of these is open access not provide                                                                                                               | :d?     |         |                                 | 229                   |                  |
| Please check all applicable reasons for not providing of                                                                                                      | pen a   | ccess:  |                                 |                       |                  |
| ☐ publisher's licensing agreement would not permit publ                                                                                                       | ishing  | in a re | pository                        |                       |                  |
| <ul><li>□ no suitable repository available</li><li>□ no suitable open access journal available</li></ul>                                                      |         |         |                                 |                       |                  |
| ☐ no funds available to publish in an open access journal                                                                                                     | 1       |         |                                 |                       |                  |
| <ul><li>lack of time and resources</li></ul>                                                                                                                  |         |         |                                 |                       |                  |
| <ul> <li>lack of information on open access</li> <li>□ other<sup>12</sup>:</li> </ul>                                                                         |         |         |                                 |                       |                  |
|                                                                                                                                                               |         | • •     |                                 |                       | _                |
| 15. How many new patent applications ('prior ("Technologically unique": multiple applications for the jurisdictions should be counted as just one application | he sam  | e inven |                                 | e?                    | 5                |
| 16. Indicate how many of the following Intellec                                                                                                               |         |         | Trademark                       |                       | 0                |
| Property Rights were applied for (give numerous box).                                                                                                         | nber i  | in      | Registered design               |                       | 0                |
|                                                                                                                                                               |         |         | Other                           |                       | 0                |
| 17. How many spin-off companies were created result of the project?                                                                                           | l / arc | e plar  | nned as a direct                |                       | 0                |
| Indicate the approximate number                                                                                                                               | of add  | itional | jobs in these compa             | nies:                 |                  |
| 18. Please indicate whether your project has a                                                                                                                | poten   | tial ir | npact on employ                 | men                   | t, in comparison |
| with the situation before your project:                                                                                                                       | <b></b> | I.,     | all 0- madium aimad             |                       |                  |
| <ul><li>☐ Increase in employment, or</li><li>☐ Safeguard employment, or</li></ul>                                                                             |         |         | all & medium-sized ge companies | enterp                | rises            |
| Decrease in employment,                                                                                                                                       |         |         | of the above / not re           | levant                | to the project   |
| <ul> <li>Difficult to estimate / not possible to quantify</li> </ul>                                                                                          |         |         |                                 |                       | ran Eralia       |
| 19. For your project partnership please estimat                                                                                                               | te the  | empl    | oyment effect                   |                       | 22               |
| resulting directly from your participation in                                                                                                                 |         | -       | •                               | $\Gamma \mathbf{E} =$ | 23               |
| one person working fulltime for a year) job                                                                                                                   |         |         | • `                             |                       |                  |
|                                                                                                                                                               |         |         |                                 |                       |                  |

Open Access is defined as free of charge access for anyone via Internet.For instance: classification for security project.

| I   | Media and Communicati                                                   | on to the g      | eneral public                                                                                                                                                                                                                                                |
|-----|-------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20. | As part of the project, were any o media relations?  O Yes              | of the beneficia | ries professionals in communication or                                                                                                                                                                                                                       |
| 21. | As part of the project, have any b<br>training / advice to improve comm |                  | ceived professional media / communication h the general public?                                                                                                                                                                                              |
| 22  | Which of the following have been the general public, or have resulte    |                  | unicate information about your project to roject?                                                                                                                                                                                                            |
|     | Press Release  Media briefing  TV coverage / report                     | •<br>•<br>•<br>• | Coverage in specialist press Coverage in general (non-specialist) press Coverage in national press Coverage in international press Website for the general public / internet Event targeting general public (festival, conference, exhibition, science café) |
| 23  | In which languages are the inform                                       | nation product   | s for the general public produced?                                                                                                                                                                                                                           |
| [   | Language of the coordinator Other language(s)                           | •                | English                                                                                                                                                                                                                                                      |