

Project DEPLOY

Grant Agreement 214158

“Industrial deployment of advanced system engineering methods for high

productivity and dependability”

DEPLOY DELIVERABLE

D47 (D11.5) DEPLOY HOWTO Guide for Managers

Report – Public

26 April 2012 – V2.0

FINAL

http://www.deploy-project.eu

Ref. Ares(2012)621048 - 24/05/2012

DEPLOY D47 – HOWTO Guide for Managers – v2.0 2

 2

Authors:

Jean-Christophe Deprez (CETIC)

Christophe Ponsard (CETIC)

Reviewer:

Huang Le Dang (Siemens)

Rainer Gmehlich (Bosch)

History

Date Version Author Description

27/1/2012 0.1 C. Ponsard Initial structure from writing plan.

12/3/2012 0.2 C. Ponsard Import material from book chapter

29/3/2012 0.3 J-C. Deprez Write the initial complete draft

2/4/2012 0.4 C. Ponsard CETIC review and improvements

2/4/2012 1.0 C. Ponsard Initial version uploaded to BSCW

4/4/2012 1.1_r1 H. Le Dang DEPLOY internal review

11/4/2012 1.1_r1 R. Gmehlich DEPLOY internal review

19/4/2012 2.0 J-C Deprez Address comments from reviewers

DEPLOY D47 – HOWTO Guide for Managers – v2.0 3

 3

Table of contents

Executive summary ... 4

1 Introduction ... 5

2 The manager role in the adoption of formal methods ... 5

2.1 Organizational contexts and formal method deployment strategies at DEPLOY

Industry Partners ... 6

2.2 Conclusions of Deployment Results at Industry Partners’ 8

3 Levering on a body of evidence on formal methods .. 10

3.1 General topics of concerns in Industry on formal methods 10

3.1.1 Why have formal methods failed to breakthrough on the market? 10

3.1.2 Important system concepts "elegantly" handled with formal methods 15

3.1.3 Books on formal method in Industry ... 19

3.1.4 Other initiatives on collecting data regarding formal methods 20

3.2 Impact on an organisation with regards to training scope and resourcing.......... 21

3.3 External factors advocating take-up ... 22

3.3.1 Stand of Standards on Formal Method .. 23

3.4 Understanding the impact of formal methods on the Software/System

Development Process .. 28

3.4.1 How do organizational procedures need to be adapted when formal

methods are introduced? ... 28

3.4.2 What impact does the use of formal engineering methods have on the

identification of issues at each phase of development cycle? 31

3.4.3 Can the use of formal engineering methods help in the design of tests? .. 35

3.5 Formal Method Tools and Quality of Support ... 38

3.5.1 What are important questions to ask about formal method tools to

determine their readiness for Industry?... 38

3.5.2 What aspects of tool supports are important for formal method tools

released under open source licences? ... 40

4. Conclusion .. 41

DEPLOY D47 – HOWTO Guide for Managers – v2.0 4

 4

Executive summary

The DEPLOY project worked on improving the maturity of formal engineering methods

and tools to raise industry interest and increase take-up. Near Real-World Industry

transfers took place, first with the DEPLOY industrial partners, then joined by DEPLOY

associate partners. In DEPLOY, Industry transfer initiatives were referred to as

Deployments. Other successful applications of formal methods also took place among the

DEPLOY industry group and service-oriented partners.

DEPLOY devoted a significant amount of effort to collect information on these various

Industry deployments and to present them as evidence of formal methods transfer to

Industry. It is expected that these pieces of evidence can also be exploited by companies

not involved in DEPLOY and to help them make informed decisions regarding formal

methods adoption. DEPLOY confirmed the key role played by managers in this adoption

process, either at project, Q&A or strategic level.

This document provides a guide for managers who consider experimenting and applying

formal engineering methods. It is based on the lessons learned from deployments of

formal methods to the DEPLOY Industry partners. It covers a range of questions deemed

of interest to managers found in the Evidence repository at www.fm4industry.org.

Although this work was primary driven by DEPLOY specific methods and tools (i.e.

Event-B and Rodin), these guidelines also reference a number of other methods and tools

and, more importantly, they are expressed in a more general context common to all of

them.

Managers reading this guide are also invited to consider accessing the website above to

enjoy an enriched experience with cross-links among related questions as well as success

stories. They will also find updated material as the repository is regularly being updated

to stay current with the latest evolution such as the release of new standards, e.g., DO-

178C, ISO 26262 or to report on more recent industrial applications of formal methods

provider by any enterprises after the end of DEPLOY. Therefore, managers are invited to

collaborate on the content of this website, not only to comment on the existing material

but also to provide information related to their experimentation with formal methods.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 5

 5

1 Introduction

This guide addresses managers’ foremost concerns regarding formal methods. Since their

inception, formal methods have had the reputation of being a topic that does not scale to

Industry’s needs and only applicable by theoreticians on toy example. Furthermore, it is

often believed that formal methods cannot be learned easily, completely disrupt product

development lifecycle and cannot be applied together with traditional software

development approaches.

This guide hopes to provide evidence regarding these formal method myths [1] so that

managers become knowledgeable enough to better grasp the pros and cons of formal

methods.

This guide is an excerpt from the body of evidence presented at:

http://www.fm4industry.org

Questions of most interest to managers where significant evidence can be made in the

answer are presented in this document. However, we encourage managers to access the

site above to access the full list of questions and the latest updates.

The remaining of this document is organised as follows. After a brief overview of

managers’ influence on the adoption of formal methods in Section 2, a list of questions

and answers on important aspects related to formal method usage in Industry are

presented in Section 3. Industry context is too divers to provide a step by step guide on

transferring formal methods in an organisation. Instead, with its practical question/answer

format this guide provides an easy, ad-hoc reading approach for managers. Each question

answer is self-contained including its external references. A reader may therefore jump

randomly back and forth through Section 3. Finally section 4 gives concluding remarks.

2 The manager role in the adoption of formal methods

It is a manager’s world. Thus decisions regarding development lifecycle paradigm are in

the hand of managers.

Managers at different levels, in different sectors and managing different disciplines of

product and system development may be interested to learn about formal methods.

Furthermore, managers will also want to understand how formal methods could affect

their team of engineers, analysts, developers and testers. To meet this broad scope of

interest, this guide attempts to address questions on a variety of viewpoints.

From interactions with managers from the DEPLOY Industry partners as well as external

to the consortium, it was notice that managers often feel that they are in unique situation.

They then infer that this uniqueness will make formal methods incompatible with their

organization settings.

To help to jump this first hurdle, we refer to the survey of Woodcock et al. that presents

DEPLOY D47 – HOWTO Guide for Managers – v2.0 6

 6

information related to the application of formal methods on 62 significant Industry cases

[2]. This survey highlights three important points. Formal methods apply to:

• Many different sectors such as transportation, defence, financial, telecom, nuclear,

healthcare, office and administration, consumer electronics, etc.

• Many different types of application such as real-time, distributed, transaction

processing, high data volume, control engineering, parallel, hardware, CASE

tools, service oriented architecture, etc.

• Many different application sizes from 1K lines of code to systems as large as 1M

lines of code.

Although these survey data should convince almost everyone that others have used

formal methods in their sectors, for their type of applications and for similar application

sizes, in many cases, managers may still feel that these general types of surveys do not

apply to their specific organizational context.

In the remaining of this section, we therefore go one step deeper and present the diversity

of organizational contexts of each Industry partner involved in the DEPLOY project,

namely, Bosch (Automotive), SAP (Business), Siemens (Mass Transport), Space System

Finland (Space). Furthermore, we also explain the different visions that each of these

organizations has for the application of formal method to fit in their respective context.

2.1 Organizational contexts and formal method deployment
strategies at DEPLOY Industry Partners

The contexts and strategies for formal method deployment at DEPLOY Industry partners

will be depicted on the following aspects:

• The organization unit of the Industry partners involved in DEPLOY

• Their general vision on how formal methods should be used in their company

(at what stages to apply formal methods , whom and how many staff

members to train)

The actual units of the four Industry partners are composed of two R&D units of large

organisations, namely, Bosch and SAP, one safety analysis unit at Siemens and one

whole SME, Space System Finland (SSF). Thus, in terms of organisation size, three units

of large companies and one small enterprise are involved. It is worth highlighting that

where Bosch and SAP involve their R&D units, Siemens involves safety engineers that

are part of the production department.

Independent of company and unit sizes, all four Industry partners directly staffed a

similar number of employees on the DEPLOY project, that is, from 2 to 3 people. Most

Industry people working on DEPLOY had a previous experience with formal methods

but only few were well versed on proof-based methods such as event-B, which was the

main formalism promoted during the DEPLOY project.

Except for two participants from SSF and one at Siemens, all others directly involved in

DEPLOY D47 – HOWTO Guide for Managers – v2.0 7

 7

DEPLOY held a doctorate degree. While the Siemens engineer had experience in the B

formal method, the two participants from SSF without a doctorate degree did not have an

experience with any formal methods prior to DEPLOY.

With regards to strategies for the deployment of formal methods in their organisation,

each of the four companies had a different view.

SSF has built a part of its business activities on formal analysis most notably in the space

sector applied on various European Space Agency projects. While analysts and architects

use formal methods, developers needn’t handle any formal methods. The involvement of

SSF in DEPLOY was primarily to learn a new formal method, namely, event-B. A

secondary goal was to determine if developers with no prior experience could learn

event-B, at least to be able to read and understand formal specifications in the event-B

language.

The main rationale for the involvement of Siemens safety engineering team in DEPLOY

is to further their expertise in the family of B formalism. Currently, Siemens is already

using the B formal method to model their software specifications. Thanks to event-B,

safety engineers will raise the level of reasoning at the system level and will be able to

mathematically prove system safety properties.

At SAP, the main objective is to use formal methods for generating test cases for testing

business scenarios, in other words, to conduct model-based testing. In this context, SAP

management expects the application of formal methods to be completely transparent to

testers who should keep using their traditional tool for specifying test cases.

In short, SSF and Siemens expects their production engineers to master formal methods

where SAP expects that their production testers will not be made aware of the underlying

formal method. The management at Bosch takes an in-between stance.

Bosch wants to explore if formal methods will enable to better handle the increasing

complexity of automotive computing. This complexity currently requires a massive effort

in test-based verification. The Bosch R&D unit wants to determine if formal methods can

increase productivity. When transferred to Bosch business units, the application of formal

methods should be hidden from engineers and only few experts in the business units

should be trained and be capable to handle the work required to apply formal methods.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 8

 8

2.2 Conclusions of Deployment Results at Industry Partners’

Section 3 and the whole evidence repository at www.fm4industry.org detail pieces of

evidence at a fine-grained level. However a few general statements can be made with

regards to the success of DEPLOY in deploying formal methods (mostly connected to the

Event-B and ProB formalisms)

Although Industry partners had different contexts and strategies, DEPLOY could

successfully address partner’s expectations and demands. As such DEPLOY in itself is a

significant evidence that formal methods can be successfully used in various Industry

domains meeting Industry needs of partners with different strategies for the application of

formal methods and widely different contexts.

In general, the following aspects are worth highlighting:

• Application of formal methods at different stages of the development lifecycle is

possible. The four Industry partners had different visions on who will use formal

methods and how. Furthermore, partners did not target the same stages of the

development lifecycle. Some mainly focus on the requirement and design stages

while other targeted the verification stage. In all case, DEPLOY could satisfy their

needs.

• Formal methods can be applied by various group, department or unit of an

organisation. During DEPLOY two of the four Industry partners involved engineers

from their production department while the other two partners involved R&D units.

Although mentality, approaches and vision are different in R&D vs

production/business units, both could apply formal methods successfully.

• Application of formal methods neither requires a Ph.D. level education nor

previous experience with other formalisms, although familiarity with other

formal methods quickens the learning curve but the lack of prior experience is

definitely a surmountable hurdle.

o Previous experience not required: all but two Industry participants have past

experience with formal methods. However, even those with experience were

unfamiliar with the proof-based approach proposed in the B formalism. Only

Siemens had experience with the B formal method. The other participants had

experience with model checking and other formalisms where the difficulty lies in

modelling but not proving.

o No PhD required: although most DEPLOY Industry organisations involved

people with doctorate degrees a few participants did not. DEPLOY showed that

software engineer without Ph.D. and without formal method background could be

trained fairly quickly to become proficient in reading formal specifications and

conceiving simple models.

This diversity of contexts of the four organizations involved in DEPLOY together

with the diversity of uses of formal methods in these organizations should definitely

convince other managers that, as unique as their situation may feel, formal methods

can be unequivocally applied to their context.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 9

 9

References – Sections 1 and 2

[1] Anthony Hall. 1990. Seven Myths of Formal Methods. IEEE Softw. 7, 5 (September

1990), 11-19. DOI=10.1109/52.57887 http://dx.doi.org/10.1109/52.57887

[2] Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. 2009. Formal methods:

Practice and experience. ACM Comput. Survey. Vol 41, nr 4, October 2009

DEPLOY D47 – HOWTO Guide for Managers – v2.0 10

 10

3 Levering on a body of evidence on formal methods

During the DEPLOY project, evidence related to formal method transfer to Industry and

usage by Industry were collected from various activities undertaken by Industry partners.

Rather than supervise all possible actions performed by Industry partners and their

interactions with Academics, a set of themes of interest to Industry were identified and

evidence material was collected only for these themes. However, the evidence collection

went beyond the scope of the DEPLOY project and a fairly extensive literature review

collected evidence material from research projects other than DEPLOY.

The themes of interest to Industry identified by DEPLOY Industry partners are the

following:

• General topics of concerns related to formal methods in Industry

• Impact on an organisation with regards to training scope and resourcing

• External factors advocating take-up of formal methods (competition, standard

bodies, laws, etc.)

• Understanding the impact on the Software/System Development Process

• Known strengths and weaknesses of tools associated to a formal method as well

as the quality of support by tool providers

The full list of Questions/answers on these themes are published at

 http://www.fm4industry.org

Below we present excerpts of questions and answers with most interest to managers.

NOTE: To make each question/answer self contained, citations and references are listed

directly after the text of the question/answer.

3.1 General topics of concerns in Industry on formal methods

Although this theme is very broad, a few interesting points can be addressed to answer

the following questions:

• Why have formal methods failed to breakthrough on the market for such a long

time?

• What important system concepts can be handled "elegantly" with a selected

formal method?

• What interesting books have been published on the application of formal method

in Industry?

• What other initiatives exist on collecting data regarding formal methods and their

application in Industry?

3.1.1 Why have formal methods failed to breakthrough on the market?

Following the rapid growth of computer science, exaggerated claims about formal

methods might have been made in the past by proponents of formal methods [1]. Such

DEPLOY D47 – HOWTO Guide for Managers – v2.0 11

 11

claim might have hindered the credibility of proponents, and of formal methods

themselves. As an analogy, consider the near- science-fiction atmosphere that was around

the rapid growth of artificial intelligence in the '80, and how it has been reconsidered

since then.

More precisely, in his seminal paper [2], Anthony Hall identified seven myths about

formal methods. Seven additional myths have been identified later by Bowen and

Hinchey [3]. These are false believes that industrials have about formal methods, and that

considerably hinder Industry adoption [4].

The first seven myths are as follows [2]:

• Myth 1: Formal methods can guarantee that software is perfect.

Actually, formal method can prove or verify if an artefact has a set of predefined

properties. If these properties are incomplete or inaccurate with respect to the actual

requirements, or if the requirements are themselves incomplete or inaccurate, formal

methods will not compensate such weaknesses.

• Myth 2: Formal methods are all about program proving.

It is true that program proving has been a very long-run topic in the field of formal

methods because source code is an existing artefact exhibiting the features of formal

language, including a notation that can be analysed by formal tools, and a nearly-

formal semantics. However, Formal methods can also verify artefacts other than

programme code such as system-level models, as done in the DEPLOY project,

communication protocols, and requirements models, etc. It is true that in DEPLOY

proving remains a significant aspect. However, that are yet formal methods that do

not require proofs to be handle by the users. Notably, model checkers are successful

at verifying particular properties such as deadlock freedom only by running a tool

with input models.

• Myth 3: Formal methods are only useful for safety-critical systems.

Formal methods tend to provide a very high level of assurance about some properties;

and this is especially desirable in safety-critical systems. However, other sectors have

high assurance requirements, such as business, security-critical systems, etc. In the

DEPLOY project, SAP and Space System Finland were deploying formal methods.

Furthermore, Formal methods were also used in DEPLOY verifying instruction set of

chip architectures at XMOS –XMOS was an associate DEPLOY partner. So, at SAP,

SSF and XMOS, the situation was business-critical rather than safety critical. The

choice of using formal methods or not is more tightly related to high assurance than

to safety.

• Myth 4: Formal methods require highly trained mathematicians.

The mathematics behind formal methods is easy. What is difficult is the engineering.

Formal methods require one to precisely specify and reason about the system

properties, etc. This level of precision tends to be much higher than the one reached

in written specifications, hence more difficult to reach. Training delays are generally

estimated to one or four weeks, with a trained teacher. It is true that formal methods

are about mathematics, and that majority of people tend to dislike mathematics,

DEPLOY D47 – HOWTO Guide for Managers – v2.0 12

 12

quickly sticking a "too difficult" stamp on it. In some cases, it is also possible to hide

formal methods behind domain-specific languages, for example, hiding mathematical

notations behind graphical notations à la UML.

• Myth 5: Formal methods increase the cost of development.

Formal methods shift the cost of development from late testing phase to early analysis

phases. Managers tend to rely on the feeling that something is being developed to

estimate the progress of their teams. Writing source code immediately tend to be less

frustrating that developing models during as much as 30% of the project lifetime,

depending on the technique in use. It is also true that using formal methods

dramatically changes the rate of identification of issues at each phase of development

cycle.

• Myth 6: Formal methods are unacceptable to users.

Formal specifications help users understand what they get, simply because they

precisely state the properties that are proven on the artefact. Formal specifications can

be difficult to communicate in raw manner to non-trained individuals; just like

reading source code might be difficult for non-computer scientists. Several techniques

can be used to help this understanding, including: paraphrasing the formal

specification into natural language (which turns to be quite easy), animating the

formal specification (depending on the available animation technology), and

demonstrating the consequences of the formal specification. In many cases, users do

not care whether a formal method was used or not. They are mostly concerned with

the end system and its usability rather than the process used to develop this end

system.

• Myth 7: Formal methods are not used on real, large-scale software.

Several success stories from the work performed on Industry size projects by

DEPLOY partners are mentioned in the online FAQ at http://www.fm4industry.org.

Other reference cited through the online FAQ point to other success stories by

organisation external to the DEPLOY project.

The additional seven myths are the following [3]:

• Myth 8: Formal methods delay the development process.

This myth has a relationship with Myth 5. In general, once formal methods are

mastered by the engineering team, the development time is roughly similar when

applying formal or informal methods. It is however true that using formal methods

dramatically changes the effort allocation at the different stages of the lifecycle and

that the rate of identification of issues at each phase of development cycle is also

altered. In particular, formal modelling often delays the requirement and design

stages but it enables the discovery of bugs in these early stages of a project when

problems and error are much cheaper to solve.

• Myth 9: Formal methods are not supported by tools.

Formal methods require specific tools to be developed to handle them such as

theorem provers, model-checkers, etc. This technology is of paramount importance

DEPLOY D47 – HOWTO Guide for Managers – v2.0 13

 13

for the successful deployment of formal methods, as it provides the degree of

automation to make formal methods attractive [5]. Obviously, it is quite frustrating to

use a method that requires one to perform many manual systematic checks while one

may have the feeling that a machine would perform such checks better and much

faster. The technology that is needed to deploy formal methods with the adequate

automation is becoming mature, and as the computing power available to common

desktop platform is increasing as well, such tools can be developed and provide direct

support to engineers who needn’t access resources other than their own workstations

or laptops.

• Myth 10: Formal methods mean forsaking traditional engineering design methods.

Formal methods provide a formal notation, also known as "formal specification

language", and some form of deductive apparatus, also known as "proof system". As

such, they are not actual development methods; they should be called tooling or

techniques. They will not make up for the engineer skills and know-how, and they

need to be integrated in some development process, just as engineer learned to use

calculators in the very early days of computer science.

• Myth 11: Formal methods only apply to software.

Formal methods apply also to hardware or system engineering. Formal methods

reason on some input that need to be made precise enough to be amenable to

automated analysis. Software artefacts tend to match this condition since programs

are executable by a machine. However, in DEPLOY, event-B is used to model whole

system and proof certain properties of this entire system.

• Myth 12: Formal methods are not required.

Formal methods deliver a very high assurance level on the artefact they analysed

about the property that was analysed. This high level of assurance might sometime be

considered as overkill, but this is to be considered on a case-by-case basis. It is true

that sectors exhibiting some degree of criticality tend to adopt formal methods more

easily than sectors without such criticality. In a situation where time to market is

more important than reliability and safety, formal methods should not be used.

However, if at later time, a product even in a non-safety critical domain breaks

through and generates huge revenues for an enterprise, it may then become important

to verify certain properties of new version of the product before launching upgrades.

SAP is a good instance of this situation.

• Myth 13: Formal methods are not supported.

Tools support for formal methods has gained significant maturity in the last decade.

Many model checkers have been released or embedded inside larger tool suites, for

example, Coverity Prevent, Polyspace, Prefast in Microsoft Team Foundation Sever.

In addition, several companies have flourished around formal method tooling and

application, for example, Clearsy and Systerel provide support on tooling and also on

modelling on the B-family formalism, ESTEREL provide help with SCADE,

Polyspace and Coverity provide training and support for their respective source code

analyzers. Finally, given the tighten completion, Europe is slowly encouraging the

Academic world to provide help to industry, either through applied research projects

DEPLOY D47 – HOWTO Guide for Managers – v2.0 14

 14

under FP7 or even directly offering consultancy services to Industry.

• Myth 14: Formal-method people always use formal methods:

Formal-method experts recognized that formal methods are not a silver bullet. In

particular, formal modelling of an application where time to market is crucial would

not be practical. Furthermore not all properties can be formally checked on a given

system in a practical way. For instance, the run-time of some source code is estimated

through benchmarking, user interfaces are tested manually, etc. Formal method

people tend to generally focus on a fragment of the whole system focusing on the

most critical, the most complex, or the most amenable to formal analysis.

From our experience in the DEPLOY project, it seems that industrials tend to avoid

changing their development process because of the incurred cost: switching people to a

new technology takes time, some people do not adapt and are therefore wasted, there is a

risk in the first project, etc. The biggest driver in industry is money. The second biggest

driver is when they are obliged to do something, e.g. to comply with some regulation. For

instance, the famous line14 metro that was developed a decade ago was developed using

the B formal method because the customer explicitly required this method to be used. A

third reason from our DEPLOY experience is that a manager might be blamed for a

failure due to his attempt to deploy new "exotic" development methods such as formal

methods, but he will less likely to be blamed for a failure arising because he pushed his

team to keep using methods that were successful so far.

References

[1] Michael G. Hinchey. 2003. Confessions of a formal methodist. In Proceedings of the

seventh Australian workshop conference on Safety critical systems and software 2002 -

Volume 15 (SCS '02), Peter Lindsay (Ed.), Vol. 15. Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia, 17-20.

[2] Anthony Hall, Seven Myths of Formal Methods, IEEE Software, pp. 11-19,

September/October, 1990.

[3] Jonathan P. Bowen and Michael G. Hinchey. 1995. Seven More Myths of Formal

Methods. IEEE Softw. 12, 4 (July 1995), 34-41. DOI=10.1109/52.391826

http://dx.doi.org/10.1109/52.391826

[4] Michael G. Hinchey, Encouraging the Uptake of Formal Methods Training in an

Industrial Context, in Leveraging Applications of Formal Methods, Verification and

Validation Communications in Computer and Information Science, 2009, Volume 17,

Part 9, 473-477, DOI: 10.1007/978-3-540-88479-8_33

[4] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.

Formal methods: Practice and experience. ACM Comput. Surv. 41, 4, Article 19

(October 2009), 36 pages. DOI=10.1145/1592434.1592436

http://doi.acm.org/10.1145/1592434.1592436

DEPLOY D47 – HOWTO Guide for Managers – v2.0 15

 15

3.1.2 Important system concepts "elegantly" handled with formal methods

The goal of formal methods is to verify, test, or develop a model that has desired

properties.

• The properties can be either generic domain-independent such as absence of

deadlocks or live-locks or domain-specific, possibly in the overall environment, such

as an invariant or a deadline for a reaction of the model.

• The model can represent a finite state machine, a more complex transition system

such as a communication protocol, or a hybrid system (with both discrete and

continuous behaviours), etc.

The main issue in constituting a design flow is selecting the right formal methods [1].

These can vary greatly according to the kind of properties to prove on the targeted

system. Furthermore, it is crucial to ensure that the property proven on the model makes

sense in the real setting of the system.

For instance, when a property of a reactive system is verified, it is crucial for the inputs

considered by the model to cover all possible inputs delivered or generated in the real

world environment in which the product will operate. This can include timing issues,

values, etc. For high assurance system, one should also consider failures of various

components of the environment and erroneous inputs.

Different formal method natively support different system concepts such as real time,

invariants, etc., however, one might twist a given formal method to incorporate additional

concepts that it does not support natively. This twisting increases the risk to produce

inelegant models, that is: hard to understand, maintain, requiring unnecessarily complex

proofs etc.

In the remaining of this section, we cover several aspects of system modelling such as

discrete vs. continuous, real time, and probabilities. We present facts to help Industry

members to select the most appropriate method for each of them, according to their

specific industrial and technical setting.

Reasoning about the real world: continuous world vs. discrete model

For instance, the B formalism captures only discrete values. Consequently, the physical

dimensions captured in B models to represent the environment of the system under

construction are all made discrete. This has to be taken into account when we reason

about concepts that are continuous in the real world, such as the speed or distances of

metro's in the context of metro driving software. In such context, two main strategies can

be developed, and used together:

• Chose a discretising that is fine enough, so that the correctness of the concrete

implementation can be deduced by the correctness of the discrete model. Speed of

trains can be represented in cm/sec instead of using the traditional km/h dimensions.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 16

 16

• Develop a model that uses safe rounding techniques, so that the discrete values are

always rounded "on the safe side", even for intricate arithmetic functions [2]. For

instance, if we prove that trains will always stop within the available stopping

distance rounded down to the inferior meter, the proof makes sense in the real

continuous world.

A more intricate example is when the controlled system obeys complex physical laws, as

met in flight control systems such as the Traffic alert and Collision Avoidance System

(TCAS). In such system, one wants to prove that airplanes will not collide when they are

under the control of software that pilots the plane to perform collision avoidance

manoeuvres. The trajectories followed by airplanes must always be flyable, that is:

airplanes cannot brake; make sharps turns or climb abruptly [3]. Such systems are called

hybrid systems, and a specific research with specific tools has been done to handle such

cases in a completely sound manner [4][5][6].

Real time

A more common issue in verification is real time. Real time is when the reaction of the

software must obey timing constraints. The most typical constraints are deadlines, where

the output of the software must come before some timeout, but other constraints can also

appear such as early deadlines or concomitance where the software cannot produce an

output before some units of time or where it must produce two outputs at the same time

or within some bounded time interval.

Model-checking is a technique that is able to verify complex timing properties on

transition systems. Most of these tools reason on models where the time is made discrete,

either because it is structured along a "universal clock" that regularly ticks, and generates

a new state of the system or because time progresses by one unit at each event of the

considered model.

• SMV, and its successor NuSMV are well-known representative of such formal tools.

In their logics, time is discrete, and progresses along a universal clock. They support

finite state machine. Properties to verify can be expressed in temporal propositional

logics [7]. For instance, one can specify that a train must stop within three "tics" after

some signal is received as follows:

StopSignal => ooo TrainStopped where o represents the "next" operator

that captures a "tic", and => represents an implication.

• UPPAAL is a well-known model checker that supports the notion of continuous time.

In the logics of this tool, time is continuous, and progresses as in the real world, while

modelled system is a finite state machine whose conditions can be expressed in term

of the continuous time [8]. For instance, on can specify the same train stopping

requirement with better realism as follows:

StopSignal => <>_{3 minutes} TrainStopped

One does not always need to formally reason on timing conditions even if a formal

method is in use. In the DEPLOY project, Siemens has reported that their control system

are conceived as a single response loop that is executed repeatedly and outputs are

computed in a single pass of this loop [9]. The loop itself must execute within some time

DEPLOY D47 – HOWTO Guide for Managers – v2.0 17

 17

bound. This time bound is checked at run time, and in case the deadline is missed, the

control system activates the emergency brakes, which is the default emergency procedure

that brings the train into a safe and stable state. This approach can only support a single

deadline, and can only be applied if a default safe procedure can be activated at any time.

Bosch has tried to reason about responsiveness of reactive systems modelled in Event-B.

Event-B does not natively supports the notion of deadline and timing condition; rather it

is aimed for reasoning about invariant, convergence, and refinement of state machines.

The approach of Bosch was to adding a set of time counters within their models, and

incrementing the counter at each relevant event, to model the elapsing of time. In order to

prove convergence and responsiveness, they also had to develop a series of complex

invariants referencing the counters from the model to capture the exact semantics of these

counters [10]. This approach requires a lot of effort in the development of invariants that

capture the notion of time, and delivered very complex model, that is, hard to understand,

maintain, etc. Similar patterns for reasoning about time and consistency in business

information systems in Event-B have been proposed in [11]. These patterns rely on a

specific variable representing a time counter, and specific event called "tic" to model the

elapsing of time.

There have been proposals to integrate the Event-B method with the SMV and UPPAAL

tools in order to natively support the notion of time in the Event-B language [12].

However, the initial semantics of Event-B does not support the notion of responsiveness;

this integration therefore required extending the language and part of its semantics.

Fault tolerance

There are several ways to reason about fault tolerance using formal methods. It depends

mainly on the kind of property one wants to prove about the verification target, and on

the kind of error one wants to envision.

When one wants to reason about the robustness of the verification target against some

well-identified failures in the environment, a common technique is to model not only the

target of verification, but also its environment. Modelling the environment allows one to

capture its possible faults into the model, and to reason on the overall system. This

approach has been followed during the DEPLOY project in the context of business

information systems [13] [14]. They developed Event-B models that included not only

the application that was the target of verification, but also part of the environment,

namely the underlying communication middleware.

When one requires quantification of some overall error rate of a system, one needs to

include probabilities into the model.

Probabilities

Specific probabilities for relatively simple systems can be estimated manually or with the

help of common statistic tools [15]. For more complex systems, specific tools can be used

to formally reason on them.

PRISM is a good representative of probabilistic model checker [16]. Probabilistic model

checking is a formal verification technique for the modelling and analysis of stochastic

systems. It has proved to be useful for studying a wide range of quantitative properties of

DEPLOY D47 – HOWTO Guide for Managers – v2.0 18

 18

models taken from many different application domains. This includes, for example,

performance and reliability properties of computer and communication systems. It

natively supports input models representing state machine with probabilistic transitions.

PEPA is a formal language that allows quantitative analysis of systems. Models can be

described in a compositional way - as cooperation between individual automata that carry

out actions. By associating rates to each action of the model, the description is interpreted

against an interleaving semantics that gives rise to an underlying Continuous Time

Markov Chain. Typical questions that can be answered by the analysis of the Markov

chain are the throughput of an action or the utilisation of a component [17] [18].

There have been attempts to reason on overall probability of failure of systems in Event-

B. Event-B does not natively support the notion of probability.

References

[1] Arvind, Dave, N., and Katelman, M. 2008. Getting Formal Verification into Design

Flow. In Proceedings of the 15th international Symposium on Formal Methods (Turku,

Finland, May 26 - 30, 2008). J. Cuellar, T. Maibaum, and K. Sere, Eds. Lecture Notes In

Computer Science. Springer-Verlag, Berlin, Heidelberg, 12-32. DOI=

http://dx.doi.org/10.1007/978-3-540-68237-0_2

[2] Butler, R. W., Carreño, V., Dowek, G., and Muñoz, C. 2001. Formal Verification of

Conflict Detection Algorithms. In Proceedings of the 11th IFIP WG 10.5 Advanced

Research Working Conference on Correct Hardware Design and Verification Methods

(September 04 - 07, 2001). T. Margaria and T. F. Melham, Eds. Lecture Notes In

Computer Science. Springer-Verlag, London, 403-417.

[3] André Platzer and Edmund M. Clarke., Formal verification of curved flight collision

avoidance maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors, 16th

International Symposium on Formal Methods, FM, Eindhoven, Netherlands,

Proceedings, volume 5850 of LNCS, pages 547-562. Springer, 2009. (c) Springer Verlag

[4] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex

Dynamics. Springer, 2010

[5] Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded

systems. IEEE Trans. Software Eng. 22(3) (1996)

[6] Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In

Morari, M., Thiele, L., eds.: HSCC. Volume 3414 of LNCS., Springer (2005) 258-273

[7] NuSMV: a new symbolic model checker http://nusmv.fbk.eu

[8] Kim G. Larsen and Paul Pettersson and Wang Yi, UPPAAL in a nutshell, Int. Journal

on Software Tools for Technology Transfer, vol 1, 134-152, 1997

[9] R. De Landtsheer, C. Ponsard, Evidence Report for STS – May 2009, Internal

Document, http://www.deploy-project.eu, July 2009

[10] Felix Lösch, WP1: Event-B Modelling Strategy, DEPLOY Plenary, October 2010

[11] Bryans, Jeremy W. and Fitzgerald, John S. and Romanovsky, Alexander and Roth,

A. (2010) Patterns for Modelling Time and Consistency in Business Information

DEPLOY D47 – HOWTO Guide for Managers – v2.0 19

 19

Systems. In: 15th IEEE International Conference on Engineering of Complex Computer

Systems. Oxford, UK. March, 2010. IEEE Computer Society.

[12] Alexei Iliasov, Linas Laibinis, Alexander Romanovsky, Elena Troubitsyna, Towards

Real-time Verification Support for Event-B, DEPLOY Plenary, October 2010

[13] Iliasov, Alexei and Romanovsky, Alexander (2008) Refinement Patterns for Fault

Tolerant Systems. In: EDCC 7: the Seventh European Dependable Computing

Conference (EDCC-7), May 7-9, 2008, Kaunas, Lithuania.

[14] Bryans, Jeremy W. and Fitzgerald, John S. and Romanovsky, Alexander and Roth,

Andreas (2009) Formal Modelling and Analysis of Business Information Applications

with Fault Tolerant Middleware. Proceedings 14th IEEE International Conference on

Engineering of Complex Computer Systems ICECCS 2009. . pp. 68-77

[15] Michele, Mazzucco and Manuel , Mazzara and Nicola, Dragoni Design of QoS-

aware Provisioning Systems. In: 4th Nordic Workshop on Dependability and Security

(NODES 2010), Copenhagen, Denmark.

[16] M. Kwiatkowska and G. Norman and D. Parker, PRISM: Probabilistic Model

Checking for Performance and Reliability Analysis, ACM SIGMETRICS Performance

Evaluation Review, vol 36, no 4, 40-45, 2009

[17] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process

Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh

International Conference on Modelling Techniques and Tools for Computer Performance

Evaluation, number 794 in Lecture Notes in Computer Science, pages 353-368, Vienna,

May 1994. Springer-Verlag.

[18] J. Hillston. Process algebras for quantitative analysis. In Proceedings of the 20th

Annual IEEE Symposium on Logic in Computer Science (LICS' 05), pages 239-248,

Chicago, June 2005. IEEE Computer Society Press.

3.1.3 Books on formal method in Industry

Showing a regain of interest in formal method by Industry, two books will be published

in 2012 on formal method in Industry practice. The first one is mainly focus on the B and

event-B formalism, a proof-based formal modeling approach while the second book

focuses on model checking.

• Industrial deployment of system engineering methods providing high dependability

and productivity. A. Romanovsky, M. Thomas (Eds). Springer. 2012

• Formal Methods for Industrial Critical Systems: A Survey of Applications. Stefania

Gnesi, Tiziana Margaria (Eds), Wiley, March 2012, Wiley-IEEE Computer Society

Press, 304 pages, ISBN: 978-0-470-87618-3

A few other interesting books published in a more or less recent past:

• Software for dependable systems: sufficient evidence? Daniel Jackson, Martyn

Thomas, and Lynette I. Millett, Editors, Committee on Certifiably Dependable

Software Systems, National Research Council, 148 pages, ISBN: 0-309-66738-0.

• Industrial-Strength Formal Methods in Practice, Hinchey, Springer London Ltd,

DEPLOY D47 – HOWTO Guide for Managers – v2.0 20

 20

1999

Surveys on formal methods in Industry, although the second one is not a book its does

reports on 62 Industry use cases.

• Industrial applications of formal methods to model, design, and analyze computer

systems: an international survey, Dan Craigen, Susan Gerhart and Theodore L.

Ralston, Ed. Noyes Data Corp, 1993.

• Woodcock, Jim and Larsen, Peter Gorm and Bicarregui, Juan and Fitzgerald, John S.

(2009) Formal Methods: Practice and Experience. ACM Computing Surveys, 41 (4).

pp. 1-36.

For a general introduction to formal methods

• Rigorous Software Development: An Introduction to Program Verification, José

Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, Simão Melo de Sousa,

Springer, 29 déc. 2010 - 307 pages.

• Understanding Formal Methods, Jean François Monin and Michael Gerard Hinchey,

Springer London Ltd, 2003, 275 pages.

Besides generic books on formal methods, additional book targeting a single formalism

have been published. This document does not intent to promote one formal method over

others. Thus books on a particular formalism are intentionally not listed in this answer.

3.1.4 Other initiatives on collecting data regarding formal methods

Other interesting initiatives related to formal methods and their application in industry are

the following

• Formal Method Europe (FME, URL: http://www.fmeurope.org). FME aims to

encourage formal methods research and application. Activities include the

dissemination of research findings and industrial experience though our symposia and

sponsored events; the development of information resources for educators.

• Open-DO (URL: http://www.open-do.org). Open DO is an Open Source initiative

that aims to create a cooperative and open framework for the development of

certifiable software.

• Formal Methods Wiki (URL: http://formalmethods.wikia.com). It provides an

extensive list of pointer to project, repositories and people connected to formal

methods. In particular, companies using formal methods are listed at

http://formalmethods.wikia.com/wiki/Companies

• ERCIM Working Group on Formal Methods for Industrial Critical Systems (FMICS,

URL: http://www.inrialpes.fr/vasy/fmics/). This site contains many links to European

organisations involved in formal methods research as well as ERCIM newsletters

published on topics related to formal methods.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 21

 21

3.2 Impact on an organisation with regards to training scope
and resourcing

Instead of answering particular questions on train, we merely relate how the DEPLOY

project performed its transfer activities. Although there may be other training approaches,

the one followed by the DEPLOY project satisfied the Industry partners and it provides a

convincing case for other to rely on.

At a high level, the DEPLOY project followed a similar approach to transfer the event-B

formal method to all Industry partners. The steps below were followed:

1. A short intensive training session (three to five days). Out of this training session

trainees are able to specify simple system in Event-B and to read fairly complex

models specified by experts.

2. Identification of pilot projects for each partner. The pilot projects should represent

a small real-world problem on which the company previously worked not using

formal methods. This pilot project was then broken down in an even smaller mini-

pilot project targeting a small part of the pilot project.

3. Industry partners attempt to solve the mini-pilot requesting coaching from

academic experts on need-to basis.

4. Once a sufficient expertise on formal modelling and proving is acquired, the

partner then worked on the complete pilot project in an autonomous way only

asking for advice from academic experts if a complete blocking point was reached

and could not be solve even after a significant effort by the Industry people

concerned.

5. Identification of research issues to address on the formal methods and associated

tooling to guarantee its transferability to Industry. This identification starts from

Industry partners’ needs that could not be addressed by the formal method or by

its tools during the pilot project. This includes issues common to all sectors (e.g.

tool must be more stable, editor must react faster to user inputs, tool must enable

for parallel team work on same models) as well as identification of sector specific

and even partner specific issues, for example, the formal method must handle

real-time constraints or the tools must be able to generate code.

6. Identification of an advanced pilot project by each partner. This advanced pilot

should be more challenging than the initial pilot project and may actually address

a project that has not yet be executed by the company.

7. Industry partners work autonomously to model the advanced pilot.

8. Review and status of the overall transfer during the Federated Event during

February 2012 in Paris.

With regards to timing, the initial intensive training (Step 1 above) was schedule at

month 3 of project. This scheduling was necessary to identify the most appropriate time

slot where nearly all Industry members could attend. a full-week course.

Each Industry partner evolved at their own pace on their respective initial pilot and mini-

pilot. This intent was not to have all partners to follow the same pace since the evolution

DEPLOY D47 – HOWTO Guide for Managers – v2.0 22

 22

could be radically different depending on people’s familiarity with proof-based formal

methods and the ease with which event-B could model the sector specific problem

selected as initial pilot. Indeed, company with more background on formal methods

tended to have more detailed and less ambiguous requirements document to start with.

Thus, they could be much faster at modelling in event-B compared to partners with less

detailed and potentially more ambiguous requirements document. Consequently, the

period of work on the pilot and mini-pilot (steps 2-4) varied from 12 to 18 months.

Thanks to this initial learning phase on pilots and mini-pilots, Industry partners better

understood what could or could not be modelled efficiently and elegantly using event-B.

All felt ready to work on the advanced pilot after the initial learning phase.

Industry partners worked on their advanced pilot in the next two years of the DEPLOY

project. Subsequently during the federated event in Paris, they all learn quite a bit from

modelling their advanced project. After modelling the advanced pilots, DEPLOY

Industry partner feel comfortable to claim to have reach complete autonomy with event-

B.

Although an external organisation may not need to follow all the steps above, this

approach provides an interesting path to draw from, in particular, with regards to its

training and coaching pattern. All four Industry partners of the DEPLOY project were

unanimously satisfied by this general training and learning approach where

1. An initial intensive training of 3 to 5 days accelerated the initial learning curve.

Not only did the formalism is taught but the installation and use of associate

tooling was covered.

2. On-demand coaching on a problem from their specific Industry helped them to

gain confidence on their event-B modelling skills and their ability to handle the

associated tooling.

3. Work incrementally on an initial pilot and then a more advanced pilot really

helped Industry partners to become autonomous with the event-B formal method

as well as other connected formalism such as ProB. Throughout this last

incremental learning, Industry partners gain the impression to learn continuously

and to finally reach full autonomy in the last year of DEPLOY. They also feel

capable to assess their formal models and determine when alternative solutions

need to be explored.

3.3 External factors advocating take-up

Although different external factors may influence on the use of formal methods such as

customer requiring the use of formal methods, competitors convincingly using formal

methods, or law and regulation, at the moment, the most important influence comes from

sector-specific standards. In this context, a manager should therefore want an answer to

the following question:

• What is the position of standards regarding formal methods in my industry segment?

DEPLOY D47 – HOWTO Guide for Managers – v2.0 23

 23

3.3.1 Stand of Standards on Formal Method

The landscape of standard includes both generic and domain specific standards.

IEC61508 is the key generic safety standard and several domain specific standards

specialise it, as shown in the following figure taken from [1]:

• IEC 61511 (published in 2003) addresses the industrial processes

• IEC 61513 (published in 2001) addresses the nuclear industry

• IEC 62061 (published in 2005) addresses the machine safety

• CENELEC/EN 50126/50128/50129 where (respectively published/updated in

1999/2001/2003) target the railway sector

• ISO 26262 (published in 2011) addresses the automotive sector

Figure 1 Classification of safety standard

In the aeronautic and space sector, there are standards not directly linked to IEC61508.

• DO-178 (1992) is for the aeronautic sector

• ECSS is for the space sector

In software related to medical devices, there are also specific standards, like IEC 62304

(2006).

Other generic standard may also have a more underlying role, for example ISO/IEC-

12207 which specifies the software development lifecycle.

The above already shows a wide variety of standards. In addition to sector specific

constraints, there are also a number of other reasons for such a variety of standards

including historical reasons (uncoordinated work, national level) and market reasons

(market protection) [2]. Moreover, those standards are also evolving hopefully to a better

integration, so they are revised (the publication year is generally appended to their

numerical identifier such as in EN 61508:2002) or more specific scheme (like the "B" in

DO-178B).

DEPLOY D47 – HOWTO Guide for Managers – v2.0 24

 24

Beyond this variety, standards exhibit common aspects:

• Definition of safety assurance levels: all standards have a risk oriented approach

of their safety functions and classify them in a number of dependability classes,

typically by specifying PFD (Probability of Failure on Demand) and RRF (Risk

Reduction Factor) figures. This classification varies across the standards for

example is IEC61508, the classification ranges from SIL1 least dependable to

SIL4 most dependable. The DO-178B has a letter-base classification ranging from

level "E" least dependable to level "A" most dependable.

• Prescription level: standards can be prescriptive (obligation to demonstrate

compliance) or just give recommendations. However, in practice deviating from

recommendations can be difficult as it may require non trivial work to motivate it

and convince the certificating organisation used to the well-established

recommended practices. This is an important factor that influences the adoption of

formal methods since a certification authority may not appreciate to audit formal

models and their associated proofs if they are not acquainted to them.

• Scope: it can address the software, the hardware or a complex system as a whole.

It can also focus on specific part of the development process (like development

lifecycle, quality management, safety assessment, system certification...). In the

following table, inspired from [2], we give a classification of standards according

to scope and domain.

Domain System Certification Development Process Safety Assessment

Generic
ISO/IEC-15289 ISO/IEC-12207 IEC-61508

CMMI

Automotive ISO-26262

Avionics DO178-B

Railway

 IEC-50126

 IEC-50128

 IEC-50129

Space ECSS

Overview of standards position regarding Formal Methods

Generic IEC61508

Based on the SIL level, IEC 61508 classifies methodologies, techniques and activities as

“not recommended”, “recommended”, “highly recommended”, etc. Among the “highly

DEPLOY D47 – HOWTO Guide for Managers – v2.0 25

 25

recommended” techniques for SIL4 are inspection and reviewing, use of an independent

test team and the use of formal methods.

To assure the required safety, reliability and correctness, a single "highly recommended"

technique is not enough: it can only be reached using a carefully chosen combination of

appropriate techniques. Reaching SIL4 in a project requires defining a dedicated system

engineering process as described in [3].

Railway sector

The EN50128 guidelines, issued by the European Committee for Electrotechnical

Standardization (CENELEC), address the development of ”Software for Railway Control

and Protection Systems”, and constitute the main reference for railway signalling

equipment manufacturers in Europe, with their use spreading to the other continents and

to other sectors of the railway (and other safety-related) industry.

In EN-50128, Formal Methods/Proofs are explicitly identified as relevant

technique/measure for software requirements specification, software architecture,

software design, implementation, verification and testing and data preparation techniques.

More precisely they are "recommended" for SIL levels 1 and 2 and "Highly

Recommended" for SIL levels 3 and 4. Particular example of Formal Methods cited are:

CCS, CSP, HOL, LOTOS, OBJ, Temporal Logic, VDM, Z and B. In the on-going 2011

revision of the standard, additional constraints are put on tools, especially code/data

generation tools with respect to specifications and evidence that the implementation

complies with the specification by providing explicit traceability.

Despite this and success stories like METEOR, formal methods have not spread in the

whole railway signalling industries, where much software is still written and tested in

traditional ways (with testing effort usually summing up to more that 50% of the

development effort). This lack of adoption is due to the investments needed to build up a

formal methods culture, and to the high costs of commercial support tools. Moreover,

equipment can conform to CENELEC even without applying formal methods [4].

However EN-50128 requires that bug detection and fixing activities be traced back not

only in the production system but in the work products delivered at early phases of the

development lifecycle, that is, the design and the requirements document. This causes

higher costs to bug fixing. Consequently companies become interested in applying formal

methods in the specification and design phases since this seems the only solution to shift

back the effort to the design team and to identify potential problems before they are

implemented in the executable system.

Although standard may mention formal methods, another barrier to their adoption lies in

the competence of certification bodies with various formal modelling techniques in

particular since most systems certified follow a test-based approach. The first time a

certification body is confronted with documentation based on formal models, it will

likely require some time of adaptation in particular, if artefacts traditionally required are

not generated, for example, in their B development chain, Siemens does not perform any

unit testing since they software units are correct by automated construction. Once

established, new system can easily follow the same path of certification granted that the

certification authority has learned from the past experience. Siemens has gone through

DEPLOY D47 – HOWTO Guide for Managers – v2.0 26

 26

this process with the B-method, and it is now accepted by the certification bodies, so that

the next projects have become easier to certify. In the specific market of metro lines, the

B-method has even become the standard required by the market [5].

Aeronautic sector

DO-178B was published a while ago, in 1992. It does not recommend or propose a

specific development process or methodology. The certification approach is to

demonstrate compliance of the process and produced artefacts with a set of goals related

to:

• software planning process

• development process

• artefact verification activities: ranging from requirements to design to code.

• integration testing

• verification of process

• configuration management

• certification

As mentioned above, DO178-B ranks the software category in 5 dependability classes:

from A (most dependable: catastrophic effect) to E (least dependable: no effect).

The scope of the application of formal methods is the artefact verification activities. DO-

178B certification can be achieved through a combination of three kinds of activities:

• reviews: relying on common software engineering practices: checklists, looking

for specific kinds of defects/flaws (ambiguities, inconsistencies,

incompleteness...)

• analysis: typically coverage analysis, data and control flow analysis

• testing activities: requirements based and with the need to demonstrate

traceability

Related to Formal Methods, DO-178B categorise them as "alternative methods" because,

at the time the document was produced (1992), they were evaluated to have an

inadequate maturity level. However they can be used "as long as they can be

demonstrated to address the goals of the standard, and their usage is adequately planned

and described (...)" [6]

The wikipedia: DO-178C revision of the standard was published in January 2012. It is

replacing DO-178B as the primary document by which the certification authorities such

as FAA, EASA and Transport Canada will approve all commercial software-based

aerospace systems. DO-178C is explicitly referring to formal methods to complement

dynamic testing. They can be used selectively or as primary source of evidence.

Automotive sector

The sector specific standard is ISO 26262. It is based on the IEC50128 and was release in

November 2011.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 27

 27

In ISO 26262, only a single development method may be highly recommended while

several others may merely be recommended. Since current Automotive Industry practices

are based on semi-formal methods, these methods have been assigned the highly

recommended status. On the other hand, not to prevent the application of formal methods

in the development of automotive products, Automotive Industry players involved in the

conception of ISO26262 advocated recommending formal methods in the standard. It is

therefore possible to be compliant to the current published ISO26262 standard when

using formal methods to develop automotive products.

Conclusion: general position of standards regarding Formal Methods and possible

strategies

Some standards recommend or even highly recommend formal methods but very few

standards describe how to manage a formal development. It is therefore difficult to prove

that the development process comply with the standards. Certification authorities have to

be convinced about this issue.

As formal methods are less widespread and certification authorities are less familiar with

them as compared to the classical development methods, there is more work to be done in

comparison with other methods especially the first time around despite the fact that a

stringer argument can usually be provided when formal methods are applied. However

the investment might be worth the effort as shown by the Siemens case for B.

References

[1] Safety Blog (in French) - http://www.surete-fonctionnement.clearsy.com/2008/12/la-

norme-cei-61508-et-ses-derives

[2] M. Bozzano, A. Willafiorita, Design and Safety Assessment of Critical Systems,

Auerbach Publishers Inc, 2010.

[3] P. Kars. Formal Methods in the Design of s Storm Surge Barrier Control System. In

Lectures on Embedded Systems, European Educational Forum, School on Embedded

Systems, Grzegorz Rozenberg and Frits W. Vaandrager (Eds.). Springer-Verlag, London,

UK, 353-367, 1996.

[4] S. Bacherini, A. Fantechi, M. Tempestini, N. Zingoni, “A Story about Formal

Methods Adoption by a Railway Signaling Manufacturer”, in Proc. FM 2006, Hamilton,

Canada, August 2006, Lecture Notes in Computer Science, 4085, 1996.

[5] DEPLOY Deliverable D11.1, Measurement Methodology Guide, http://www.deploy-

project.eu/pdf/d7-revised-final.pdf

[6] RTCA/DO-178B "Software Considerations in Airborne Systems and Equipment

Certification", 1992

DEPLOY D47 – HOWTO Guide for Managers – v2.0 28

 28

3.4 Understanding the impact of formal methods on the
Software/System Development Process

To better understanding the impact of formal methods on the development process,

DEPLOY Industry partners found the following topics interesting

• The impact on the quality of work products developed using formal methods,

• The capability to exploit formal models at various stages of the development

process,

• The capability to perform reuse across development projects when formal

methods are used, including reuse of formal and proven artefacts

• The capability to phase the learning of a formal method in an organisation and

eventually to limit the scope of who must understand and become an expert in a

formal method

• The capability to phase the migration to using a formal method incrementally

(given the existence of products not initially developed using formal methods)

Several questions and answers on these different themes are addressed in the online FAQ

(www.fm4industry.org). Below a set of three questions and answers of most interest to

managers have been selected.

3.4.1 How do organizational procedures need to be adapted when formal
methods are introduced?

Each company has its own role and task distribution scheme. In this answer, we consider

the following roles and responsibilities:

• High-Level Managers. This level of management includes top-level managers of

a production department or research and development department. Product and

product line managers who are only concerned with the commercial aspects of a

product are included in this management category. The responsibilities associated

with the role of High-Level Managers are related to strategic decisions making

and analysis of financial impact.

• Project and QA Managers. This group includes all managers who directly
manage engineers, analysts, and QA practitioners. This group of managers may

belong to production department or research and development department. The

responsibility of this role is limited to determining the feasibility of a project and

managing projects. These managers do not need to perform technical tasks but

they often need to understand the technique, method and tools used by their teams

to determine the feasibility and status of a project and decide if the resource

allocation is appropriate to achieve a successful project.

• Engineers and Analysts. This role category represents people who apply formal

engineering methods during system development projects.

• QA Practitioners. This role category represents people who do not necessarily

apply a formalism but who need to understand it because they will have to review

DEPLOY D47 – HOWTO Guide for Managers – v2.0 29

 29

and use documents containing the given formalism. QA practitioners are split

from the role of Project and QA Manager because QA practitioners will ask

different questions than Project and QA Managers. QA practitioners are in "do"

actors versus the "supervise" activity of Project and QA Managers.

Below, we review how each of the role above will need to adapt his customary practices

when formal methods are initially used on a project.

For High-Level Managers

The use of formal method dramatically shifts the workload of a project towards the

analysis phase. Much more work is required in the analysis phase to develop formal

models while much less is required at the testing phase. As such, managers need to:

• Adapt their personal workload metrics to accurately estimate the costs and

delay for projects that use formal methods

• Adapt their personal progress monitoring metrics to monitor the proper

progress of projects that use formal methods

• Adapt their go/no-go procedure to decide on the use (or not) of formal method

in a project.

Estimating the cost factors in the context of formal methods requires some experience

[1]. The factors involved in such go/no-go procedure are discussed in [2]. Basically, these

include:

• Obligation to use formal methods, for instance, because it is requested by the

customer

• The development is internal, or on a shared-risk contract. This is mainly to

compensate for the possible low accuracy of cost and delay estimates.

• The management is ready to face the cost shift from late phase of the project to

early phase. This can lead to an early red flagging of the project as being over

schedule, and indirectly make it really of schedule due to increased reporting

requests.

For Project and QA Managers

Project managers and QA managers need to properly design the development process and

select the most adequate formal method to ensure that:

• The claims that are proven by the formal method are relevant: One can prove

many things about a model; one should ensure that what is proven is useful to the

project, and that all what should be proven is actually proven, or discharged to

another validation method

• The artefact on which the claim is proven is the most adequate one: One can

prove different things on different artefacts. For instance, one can prove some

behavioural properties on abstract state machines or on the programme source

DEPLOY D47 – HOWTO Guide for Managers – v2.0 30

 30

code. It is much easier to prove such claims on abstract state machines. This is a

trade-off between cost (the earliest defects are detected the cheaper they are to

correct, checking more abstract artefacts is simpler than more concrete ones) and

level of assurance (the later the verification is performed, the fewer opportunities

there are to introduce defects in the process)

• The abstractions made in the model that is actually verified are valid: Models

introduce abstraction; one should ensure that the established proofs remain valid

in the real world although they might be done on an abstract model.

• The level of assurance that is delivered by the provers is adequate: Not all

formal methods deliver the same level of assurance. One should select the most

appropriate formal method according to the current context.

• The formal method is compliant with the targeted standard. Some sectors

require very high assurance, and might require proofs to be cross-checked by a

redundantly with different provers, or to rely only on certified provers. Some

provers of the DEPLOY project are certified for some CENELEC level of

assurance.

For Engineers and Analysts

Engineers need to:

• Develop formal artefacts: This can be more-less time consuming depending on

the considered artefact.

• Formally define the claims that need to be proven: These can typically be

derived from requirements documents. Some formal methods natively include

these claims, for instance if they are related to the proper use of programming

language constructs like in software code verification tools à la Polyspace.

• Prove the claims on the artefact: depending on the considered formal methods,

this can be more-less time consuming, depending on the level of guidance that is

required by the tooling, the run time of the tooling, and, possibly, the intertwined

development process where the model is gradually proven as it is developed.

• Exploit the model in the next step of the development process: When a formal

model has been developed, and some claims proven on it, this artefact should be

exploited in the development process. This can be through a translation process

best carried by automated tools.

For QA and Safety Engineers

QA and safety engineers need to assess that

• The claims that are proven by the formal method are relevant: One can prove

many things about a model; one should ensure that what is proven is useful to the

project, and that all what should be proven is actually proven, or discharged to

another validation method

DEPLOY D47 – HOWTO Guide for Managers – v2.0 31

 31

• The abstractions made in the model that is actually verified are valid: Models

introduce abstraction; one should ensure that the established proofs remain valid

in the real world although they might be done on an abstract model.

• The formal methods have been used in an adequate way. For instance, one can

prove any truth with a theorem prover if one includes an absurdity in the axioms.

• The artefact on which claims have been proven is properly exploited in the

downwards development process

• The model is easy to prove. Some proof technology reach higher proof

automation of performance if the model is developed according to some rules

(avoid some type of constructs, avoid symmetries, etc.). Such verification can be

performed by QA before the model is actually proven, to spare the time of

engineers.

QA then amounts to checking that a formal model complies with the established

guidelines. At Siemens, the above tasks are under the responsibility of the safety

engineers. QA are in charge of verifying that the developed models match some reference

good practices that have been synthesized into a set of guidelines. This verification is

performed before proofs are made. Some of these good practices are related to the three

aforementioned bullets while some others are aimed at reaching a high level of auto-

proving. This is how Siemens reported to be internally organized.

References

[1] Calbaut, Mathieu Challenges in Applying Formal Methods -- An SME View. In:

Dagstuhl seminar on Refinement Based Methods for the Construction of Dependable

Systems, 14-18 Sept. 2009

[2] Donna C. Stidolph and James Whitehead, Managerial Issues for the Consideration

and Use of Formal Methods, In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli (eds.),

FME 2003, International Symposium of Formal Methods Europe, 2003,8-14

3.4.2 What impact does the use of formal engineering methods have on the
identification of issues at each phase of development cycle?

Formal methods can apply at different stages of the development lifecycle to automate

various types of verification that would otherwise be performed at later stages of product

development lifecycle or not performed at all. As a result, it is generally admitted that

formal engineering methods help to identify issues earlier in product development

lifecycle unlike non-formal developments where issues are increasingly identified as the

development lifecycle advances to reach usually a peak at testing time.

Therefore, by identifying errors earlier, formal methods forces one to resolve them

earlier, for example, by removing ambiguities and incompleteness in the various work

products produced as early as after requirement analysis or the design stage. In addition

to removing errors, formal methods also help stakeholders to gain additional knowledge

about the product or system being developed. For example, from a formal design, one

DEPLOY D47 – HOWTO Guide for Managers – v2.0 32

 32

may learn about timing information in a complex system or from a formal analysis of

source code, one may identify performance bottle neck, segments of dead code or

deadlock freedom.

Below, various industrial case studies were reviewed to determine the impact of formal

method usage on the identification of issues at various phases of the development

lifecycle.

Requirements Phase

The use of formal methods at requirements analysis stage can be very beneficial to the

whole development process as issues and error identify at this point are much cheaper to

correct.

Requirements documents are usually insufficient for specifying formal models. In a non

formal development approach, these insufficiencies can persist much longer in the

development lifecycle. On the other hand, formal modelling forces requirement analysts

to be very accurate and detailed in turn they ask very precise questions to customers to

complete or correct problematic requirements. Indeed, given the wealth of information

needed to develop formal models, requirement analysts learn to ask question that are

often completely overlooked by non-formal development techniques. After a few years of

experience with formal modelling, analysts become much better at asking directly the

right question to obtain clear and complete requirement from the customer and they are

also much faster at identifying requirements defects even before initiating a formal

analysis.

Below is a short presentation on works performed during the DEPLOY project and other

endeavours to show that the various facts mentioned above are verified at Bosch,

Siemens, SSF as well as outside the DEPLOY consortium.

At Bosch, the substantial refactoring of a requirements document using the Problem

Frames method helped to correct a number of problems such as inconsistency,

incompleteness, and ambiguity. This is described in more details in a success story

found in the website mentioned above.

Since Siemens started using B to develop formal models of their software

components, they have become much more thorough during requirement

development and elicitation. In particular, they report that they now ask questions

that were not even considered before when informal development techniques were

used, for example, they now require an accurate ground topology of the metro

system to reason accurately about braking distance to reach a halt.

SSF initially attempted to model formally two different systems using Event-B,

namely, the BepiColombo SIXS/MIXS on-board software and attitude and orbit

control systems. The modelling exercise of BepiColombo SIXS/MIXS on-board

software requirements in Event-B helped to identify ambiguity, incompleteness and

redundancy that are commonly discovered later in the development cycle.

Similar observations have also been made outside of DEPLOY:

In [1], [2], [3], it is explained that SCR (Software Cost Reduction) and its toolset

were used to identify several serious issues during requirement analysis. SCR is

DEPLOY D47 – HOWTO Guide for Managers – v2.0 33

 33

devoted to the proper identification of requirements through simulation and

validation of state machine by end users. SCR is furthermore able to perform simple

checks on the formal models such as determinism and forms of logical completeness.

This method is still in use nowadays and has matured for more than 15 years.

In [4], two case studies explored the impact of two formal techniques for specifying

and checking requirements. In one case study, SRI's PVS specification language was

used and Stanford's Murphy finite-state verification system was used in the other.

Among various benefits of using these two formal requirement analysis, the authors

compares the issues identified when using formal requirement analysis and when

only performing non-formal reviews. They discovered that the use of formal

requirement analysis help to identified 7 major issues while non-formal approach

only discovered 1 error; concerning minor issues, 23 were discovered using formal

method and 3 only through non formal checks.

In [6], The NewCoRe project that ran over a two year period in the early 90’s

present the use of formal method to validate communication protocol in the Telecom

sector. A specification of 7,500 lines of (non-commented) SDL code was written and

about 150 correctness properties were formally specified and verified for the SDL

model. As a result, a total of 112 serious design errors were detected in the design

requirements.

Design Phase

Using formal methods at the requirement level aims to ensure that the functionality of the

product are well understood and described, and that all angles of that functionality have

been analyzed and specified in details in the requirements document. Although

requirements document make general statement regarding non-functional requirements as

well as describe constraints from the environment, requirement analysis cannot really

guarantee non-functional behaviours because requirements do not usually specify the

complete architecture of a proposed solution. Consequently, formal specifications of

certain non-functional behaviour are left for later stages of the development lifecycle.

The most important observation from the field concerning issues identified at design time

comes from Siemens. They currently use the B method to design their software

component for metro and train systems. In their design, all safety conditions of their

formal models are proved to be satisfied. Thus, a system implementation that matches the

design will never encounter safety problem (within the scope of the considered

requirements). Clearly, when they encounter a problem with a proof, this forces them the

redesign their formal models until all safety conditions are guaranteed. Certain proofs can

take one to two months to be verified by humans. Thanks to Pro-B, a model checker and

animator build for B and Event-B models, Siemens can now check if a counter example

exists in matter of seconds thus avoid wasting time trying to proofs non-provable facts.

We can therefore argue that in the Siemens case, formal modelling not only helps to build

safe transport systems but also do so at a much improved productivity rate.

Another observation relates to the use of formal vs informal techniques to verify the

correctness of models. At SSF, two teams performed the verification of the BepiColombo

SIXS/MIXS on-board software and attitude and orbit control systems. The first team used

informal review techniques while the second team created formal models of the system

DEPLOY D47 – HOWTO Guide for Managers – v2.0 34

 34

using event-B to prove the correctness of the system.

A SSF team modelled the architecture of two different systems using Event-B,

namely, the BepiColombo SIXS/MIXS on-board software and attitude and orbit

control systems. The team who model in event-B identified several issues linked to

ambiguity, incompleteness and redundancy in requirements. Although these

associated observations were also identified by the other team not using formal

method (mostly based on algorithm inspections), the power of Event-B models raised

the confidence of design analysts much more on the correctness of the proposed

system architecture and algorithms. In conclusion, applying informal verification

techniques at design time is very helpful however it is hard to determine when a

sufficient effort has been spent. On the other hand, when using formal methods, the

sufficiency of design verification is limited to determining if proven properties cover

an wide spectrum of the real world situations.

Another important observation concerns to the impact of formal design on later stages of

the development cycle. In particular, SSF noticed that using the Event-B formalism for

modelling attitude and orbit control systems helped to create simpler more modular

system architecture easier to understand for system developers. Consequently, they

believe that developers will introduce fewer errors at the implementation stage.

Implementation & Debugging Phase

Siemens has implemented a complete formal chain from design to code by using a code

generator (recognized for SIL 4 certification). B specifications proven correct are fed to

the code generator that generates the full code. No edition to this code is performed and

given the correctness of the code generator, no issues are identified during the testing

phase, which can therefore be eliminated.

A more traditional approach to applying formal methods on source code is Source code

analysis, which has proven effective in Industry in the last decade. In such case, the

development approach to obtain source code may be informal and then tools for model

checking or performing abstract interpretation are use to prove certain properties of the

source code program. Notably, the Polyspace tool is a well-known example that performs

static analysis of C, C++ or ADA code through abstract interpretation, thus relying on

automated algorithm [5]. It has been extensively deployed in Space and avionics sectors

for instance. In [7], the authors explain how Astrée has been used to prove certain

properties of avionics systems.

Testing Phase

At Siemens, code is generated from B specifications proven correct. Hence, they needn't

perform any unit testing as no issue would be identified except if errors exited in the code

generator or complier. Both of those used at Siemens have been certified for use at SIL4.

However, given the habits of most customers to participate to acceptance test session to

sign the final acceptance record, Siemens still performs acceptance test to validate the

overall functioning of the software. In other words, given the very thorough design

specification induced by the use of the B formal method, all requirement issues are

identified during the design phase. Acceptance testing is only limited to performing a

demonstration of the system to the customer using animation for example.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 35

 35

References

[1] Constance L. Heitmeyer, "Formal Methods for Specifying, Validating, and Verifying

Requirements", J. UCS, 5:13, pp 607-618, 2007.

[2] S. M. Easterbrook, R. R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton,

“Experiences using lightweight formal methods for requirements modeling.” IEEE Trans.

Software Eng., vol. 24, no. 1, pp. 4–14, 1998.

[3] S. Miller, “Specifying the mode logic of a flight guidance system in CoRE and SCR,”

in Proceedings of the 9th 2nd Workshop on Formal Methods in Software Practice

(FMSP’98), 1998.

[4] Crow, J., Di Vito, B.L.: Formalizing Space Shuttle software requirements: Four case

studies. ACM Transactions on Software Engineering and Methodology 7 (1998) 296–332

[5] Polyspace product for embedded software verification

http://www.mathworks.com/products/polyspace

[6] G. Holzmann., The theory and practice of a formal method: NewCoRe In Proceedings

of the IFIP World Computer Congress, volume I, pages 35-44, Hamburg, Germany,

August 1994. North-Holland Publ., Amsterdam, The Netherlands.

[7] Jean Souyris and David Delmas, Experimental Assessment of Astrée on Safety-

Critical Avionics Software in Proc. Int. Conf. Computer Safety, Reliability, and Security,

SAFECOMP 2007, Francesca Saglietti and Norbert Oster (Eds.), Nuremberg, Germany,

September 18—21, 2007, Volume 4680 of Lecture Notes in Computer Science, pp.

479—490, © Springer, Berlin.

3.4.3 Can the use of formal engineering methods help in the design of
tests?

This short answer is clearly YES.

Deploying a full formal chain from design to code as done at Siemens implies a

tremendous shift. In the Siemens case, this shift was imposed by their customer, the

RATP (Paris organisation responsible for the metro system). Thus, it was their only

choice if they were to continue to conduct business with RATP.

In most other cases, reaching such a level of formality is not an option, at least not

initially. In such cases, it is more customary to produce formal models to prove that the

designed architecture is adequate to meet certain properties. Subsequently, these formal

models are handed to the development team that uses an informal development approach.

It is however possible to harness the power of the formal model to generate test cases and

potentially a test oracle.

Overall, there are at least four ways the design of test can be impacted by the use of

formal methods:

1. Certain kinds of tests can become unnecessary if a formal method chain results in

a proven implementation;

DEPLOY D47 – HOWTO Guide for Managers – v2.0 36

 36

2. Test cases can be automatically derived from formal models with assurance of

some type of coverage;

3. In a manual design process, deriving tests from formal models can be more

systematic than from informal documents;

4. The use of formal methods results in requirements that are more precise. An

important side effect of better requirements that they facilitate to develop better

test cases.

1. Removing the need for specific kinds of tests

When formal methods are in use, some tests might be dropped, or partially dropped. For

instance, if one validates that a communication protocol is deadlock-free through formal

methods, one will not focus the testing of the implementation of this protocol on a search

for deadlock. Rather, one can validate that the implementation complies with the verified

model, and test properties of the protocol can be omitted.

As a concrete case, Siemens does not perform any unit testing of the software code that is

developed through the B formal method, as the B models are proven correct by

construction, and the code is generated from these B models through a certified code

generation process relying on automated code generation tools. Rather, they focus the

testing on the integration phase, to validate e.g. the requirements and the assumption on

the domain. Of course, switching from a test-based validation to a formal method-based

validation must be done in accordance with the targeted norms or standards.

2. Model-based testing

One can derive test cases from formal models. This is known as "model-based testing" [1,

2, 3, 4, 5]. Model-based testing automates the detailed design of the test cases and the

generation of the traceability matrix [1]. More precisely, instead of manually writing

several test cases, the test designer writes an abstract model of the system under test, and

then the model-based testing tool generates a set of test cases from that model. The tests

are generated so as to enforce some completeness property on the model.

For state machine, one can ensure the following test completeness properties:

• Covering each state of the model

• Covering each transition of the model

• Covering each transition pair of the system (provided they can all be taken at

some point)

• Covering each simple acyclic path

Model-based testing has two main advantages:

• First, the design time of test cases is reduced.

• Second, one can generate a variety of test suites from the same model by using

different test selection criteria.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 37

 37

Existing tools for model-based test generation include [6, 7, 8, 9, 10, 11]. Formal models

from which test cases are generated can be any transition system including state

machines, possibly incorporating some executable software code, or formal models such

as B or Event-B. In the DEPLOY project, SAP showed model-based testing was feasible

based on Event-B and ProB tools [12].

3. Manual design from formal models

Once high quality specifications or models are available, for instance as the result of a

formal development process, one can identify test cases in an easier way from these

models even on a manual basis. For instance, identifying a test case can be done more

easily if one aims at following a given path in an explicitly modelled state machine. This

is more-less the process that is automated by model-based testing tools.

Besides this, team working is made easier because engineers can easily communicate

based on precise models, and collaborate to develop test suites.

4. Better requirements equals better test cases

Designing formal models will force designers to explore thoroughly the meaning of

requirements. In most cases, formal methods forces designers to iterate with the customer

to understand fully the system under design. This will then generate update to

requirements document to make it more precise, more concise (remove of duplicate

statements), less ambiguous. Consequently, it forces one to deliver higher quality

requirements documents. Thus even if the generation of test cases remains manual, high

quality requirement enables one to more efficiently write relevant test cases.

References

[1] Mark Utting and Bruno Legeard, Practical Model-Based Testing: A Tools Approach,

Morgan-Kaufmann 2006

[2] Jacek Czerwonka, www.pairwise.org, Pairwise Testing; Combinatorial Test Case

Generation, Last updated: December 2008

[3] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, ‘‘Test

selection based on finite state models,’’ IEEE Trans. on Software Eng., vol. 17, pp. 591-

603, 1991

[4] G. Gonenc, ‘‘A Method for the design of fault detection experiments,’’ IEEE Trans.

Computers, vol. C-19, pp. 551-558, 1980.

[5] Jonathan Jacky, Margus Veanes, Colin Campbell, Wolfram Schulte, Model-Based

Software Testing and Analysis with C#, Cambridge University Press

[6] http://www.all4tec.net

[7] http://www.codeplex.com/NModel

[8] http://www.smartesting.com

[9] http://research.microsoft.com/en-us/projects/SpecExplorer

DEPLOY D47 – HOWTO Guide for Managers – v2.0 38

 38

[10] http://www.conformiq.com

[11] http://www.trusted-labs.com

[12] http://www.stups.uni-duesseldorf.de/ProB

3.5 Formal Method Tools and Quality of Support

The online evidence FAQ identifies the various platform on which different formal

method tools run. However, tools evolve hence what is true for a tool today changes in

tomorrow. Therefore, this report prefers to focus on generic questions that a manager

should ask regarding formal method tools and tool support. This is even more important

as many formal method tools are the results of research projects that have released tools

under open source licences. Many managers are still cautious when it comes to open

source partly, because it is a new distribution model with several unknown factors and

also because they are not clear on how to assess the quality of these tools and tool support

from tool providers. Although generic, the answers to the two questions below hope to

relieve part of the worry by guiding manager to asking the important questions, in

particular when open source is considered.

3.5.1 What are important questions to ask about formal method tools to
determine their readiness for Industry?

During DEPLOY, the four Industry partners as well as other associated partners have

used and given feedback on the various formal method tools used. Based on their

experience they found the following point most important [1].

• Are there guarantees of long term Tool availability and Support?

Industry projects might last tens of years between the development and the

decommissioning of a system. It is crucial for Industry to ensure proper support

throughout the complete project lifetime including its retirement. Tools can be distributed

under Open Source or Proprietary Licenses. Each model comes with its own risk to

disappear (bankruptcy for proprietary code vs. community disappearance for Open

Source). Given the niche market, securing the support is not a trivial task (e.g. escrow for

proprietary code, direct community involvement or support for Open Source).

• Is the Tool reliable?

Closed source reliability is a matter of trust which can be provided by a certification

scheme for example. Concerns have been raised about Open Source tools capability to

achieve high reliability [2]. However the large number of industrial strength tools

available nowadays tends to prove the contrary: e.g. PVS, nuSMV, and several others.

Some reasons are related to the potential of massive peer review and at the design level,

better defined interfaces and careful designs required for a distributed development.

Furthermore, extensive test suites are often available for such Open Source tools.

• Is the Tool scalable?

The ability to scale up depends on different factors. Tool-induced limitations may be due

DEPLOY D47 – HOWTO Guide for Managers – v2.0 39

 39

to the underlying formal technology, implementations problems (e.g. some bottleneck in

a processing chain) or simply usability (e.g. limitation to manage large pieces of models).

To assess scalability, references, feedback and reviews provide initial information useful

to directly rule out inadequate tools for Industry. A second step is to challenge the tool on

realistic case study in various Industry sectors since the way models are build can also

impact on the ability to scale up. Open Source tools might have higher risk of not scaling

up, especially if they are still at the R&D stage. However there are also highly scalable

Open Source tools in the area of formal methods e.g. SPIN and nuSMV are scalable

model-checkers, ACL2 and Isabelle are scalable theorem provers.

• Is the Tool usable?

It is important that tools ease various tasks when building or modifying a model, carrying

out validation and verification activities, working in team, etc. Commercial tools

generally have better usability because a special attention is devoted to this aspect while

Open Source tools tend to focus more on the core functionality and efficiency, with

sometimes only a command line interface.

• Does the Tool integrate well in Industry tool chains?

The ability to integrate into existing industrial tool chains is fundamental. This requires

the existence of well-documented data format, availability of APIs/binaries on specific

OS’s/integration with popular tool platforms. This is an area where Open Source usually

outperforms proprietary tools. Furthermore, Open Source often adopt open standard data

format. On the other hand, heighten competition frequently pushes proprietary tools to

keep internal data format hidden to force vendor lock-in.

• What is the impact of tools on certifying an Industry product?

Using a formal tool in the design flow (i.e., at design time) might have an impact on the

certification process, especially if the tool is generating work products considered for

review by certification authorities such as source code for systems requiring high

integrity levels. Evidence of correctness of the output produced by those tools has to be

provided by various means: redundant implementation, extensive test coverage, specific

verification activities. As supporting success story for this, the ProB tool used by

Siemens and developed by the University of Düsseldorf is undergoing a qualification for

the railways EN-50128 standard.

References

[1] Christophe Ponsard, Jean-Christophe Deprez, Renaud De Landtsheer, Is my Formal

Method Tool Ready for the Industry?, Proceedings of the 11th International Workshop on

Automated Verification of Critical Systems (AVoCS 2011).

[2] D. Craigen. Formal Methods Adoption: What’s Working, What’s Not! In Proceedings

of the 5th and 6th International SPIN Workshops on Theoretical and Practical Aspects of

SPIN Model Checking. Pp. 77–91. Springer-Verlag, London, UK, 1999.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 40

 40

3.5.2 What aspects of tool supports are important for formal method tools
released under open source licences?

An enterprise may decide to take an active part in the development of a formal method

and its associated tooling however in most cases it only wants to build an expertise on a

selected formalism and to acquire the software tooling associated to the select formalism.

In case of problems, the enterprise also wants to obtain support. Supports may take

different forms such as help in installing tools, training in using tools and learning the

formalism, obtain correction or work around in case of problems with a tool, and in case

of a major blockage when modelling with the formalism, an enterprise may also want to

hire an external expert to help with the real world formal modelling exercise.

Managers are acquainted with the acquisition process of proprietary tools on the other

hand they are usually not well-versed on how to acquire open source software. Several

open source assessment methods have emerged over the last decade, some from

European projects such as QualOSS (http://www.qualoss.eu) or Qualipso

(http://www.qualipso.eu). In addition, QSOS (http://qsos.org) and OpenBRR

(http://www.openbrr.org) are two other open source assessment methods. All of them

follow a similar assessment approach where quality indicators are inferred from lower

level measurements related to software as well as to the community, its development

process and other information regarding licences and service providers.

A sample assessment result based on the QualOSS standard-assessment method applied

on Rodin tool performed in January 2009 is available on the evidence FAQ at the

following URL: http://www.fm4industry.org/index.php/TOOL-HM-1.

Alternatively, http://ohloh.net provides measurements for many open source software.

Although not performing a qualitative assessment, Ohloh provides a initial set of

information, for example, to determine in a matter of seconds how many commits have

been made recently, how many committers have participated and to which degree. It may

therefore be of interest to a manger to take a quick glance at Ohloh data before

considering a more thorough assessment. Unfortunately, not all formal method tool are

found in Ohloh, notably, Rodin is referenced but has not measurement data available.

DEPLOY D47 – HOWTO Guide for Managers – v2.0 41

 41

4. Conclusion

This HOW-TO guide for managers proposes an initial set of questions/answers to help

better understand the impacts of formal method adoption in Industry. This guide is

supplemented by a wiki style website open for collaboration.

In addition to having more questions and answers as well as cross-references, the online

FAQ of evidence also include a set of success stories from the DEPLOY project. Unlike

Q/As that address cross-industry concerns, success stories are pieces of information

specific to a transfer action at a single DEPLOY partner. Although context-specific,

DEPLOY success stories may also provide inspiring material for managers to learn about

formal methods and hopefully to make their initial move to experimenting with formal

methods with their development team.

