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Abstract

This deliverable summarizes the work conducted by the partners in the DEPLOY
extension called "DEPLOY Enlarged EU". As a result of this extension, two new
partners from Romania, University of Bucharest and University of Pitesti, joined
the DEPLOY consortium. The work started in June 2010 and continued until the
end of the DEPLOY project in April 2012. The objective of this deliverable is to
report on the research performed in this project extension and on the integration
of the new partners in the project.
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Chapter 1

Executive summary

On June 1, 2010 two new partners, University of Bucharest (UniBuc) and Univer-
sity of Pitesti (UniPit) from the enlarged EU joined the DEPLOY IP to contribute
to the second half of the project on industrial deployment of system engineering
methods providing high dependability and productivity.

In this short introduction, we summarize the main achievements and per-
formed activities. The technical details are provided in the following chapters.

Technical contributions. As originally planned, the main new technical contri-
butions of DEPLOY-Enlarged EU followed two strands of work:

− Based on the flexible structuring mechanisms of the register-voice inter-
active systems formalism, UniBuc and Aabo studied their applicability to
Event-B in two directions. First, we have investigated novel composition
mechanisms in Event-B as well as techniques to alleviate the discharging of
proof obligations in Event-B and second, we have proposed finer-grained
synchronization between parallel processing with a significant impact on
the Event-B modeling of time. The details are described in Chapter 2.

− UniPit studied together with partners from SAP and UDUS, model-based
testing techniques (MBT) for Event-B, using automata learning, constraint
solving, and genetic algorithms. Details can be found in Chapter 3.

In order to better understand the work done to satisfy the requirements and
goals in the extended DEPLOY’s Description of Work (DoW), we provide in Ta-
ble 1.1 side-by-side the set of extended tasks (Tasks 7.1, 8.5, 9.10) and a new one
(Task 12.4) together with the actions performed during the project.

Research papers. To ensure proper dissemination, all results of the research
were submitted as papers to different venues (journals, conferences, and work-
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Extended/new tasks in DoW Its realization in DEPLOY "Enlarged EU"
Extension of Task 7.1 Composition from WP7:
[...] We will exploit the interaction systems (IS)
techniques, including their stream-based compo-
sition operators, to further increase the power of
the formalism. Particular emphasis will be on us-
ing structured interaction composition operators.
To this end we will express stream-based abstract
temporal data on interaction interfaces to sup-
port decomposition of systems into arbitrary small
components, which can be further aggregated, ap-
plying the interactive system composition opera-
tors, to reconstruct the initial systems.

In order to exploit the IS techniques in Event-B,
we worked towards a tight integration level of
the two formal frameworks, up to a level where
key features of each formalism can be easily
translated into the other. Since a notion of re-
finement is a key feature in Event-B but not in IS
and structured interaction composition is a key
operation in IS but not in Event-B, we studied
them in conjunction with refinement-preserving
mappings from one formalism to the other and
vice versa. The technical details are provided in
Section 2.1.

Extension of Task 8.5 Modelling and Analysis of
Real-TIme Systems from WP8: [...] We view the
patterns of temporal data as dual to the patterns
of memory states. Temporal pointers (specifying
the starting time of data on streams) will be used
to represent temporal data and the IS interaction
composition operators will be used to deal with
real-time constraints.

The above integration between IS and Event-B
is also used to address Task 8.5, by mapping the
temporal notions to Event-B. More precisely,
the temporal features of IS are modeled by ’tem-
poral pointers’, which appear in the interfaces of
the IS interaction composition. This is possible
even in the presence of refinement. The techni-
cal details are given in Section 2.2.

Extension of Task 9.10 Model-based Testing
from WP9: [...] Techniques to optimize and min-
imize test cases will also be developed. Model-
based testing (MBT) is of particular interest to the
deployment in WP4 and feedback from WP4 will
be important in order to fine-tune the techniques.
The used MBT approach will be enhanced with
search-based approaches improving test data gen-
eration which is particularly important for busi-
ness information systems. We will use evolution-
ary approaches to bring a significant contribu-
tion to test data generation, by applying differ-
ent genetically-inspired algorithms for generating
various data mutants that have as their evolution
goal the satisfaction of the data constraints. This
work complements the directed model checking
techniques, with the potential of increasing event
coverage required by MBT based Event-B spec-
ification, as well as decreasing the effort of ex-
ploration of the large state spaces induced by the
Event-B specification.

In DEPLOY "Enlarged EU" we succeeded to
achieve all the proposed goals and even more.
First, we indeed devised and implemented
methods of test suite optimization based on
genetically-inspired multi-objective optimiza-
tions (Section 3.4). Then, we proposed an MBT
procedure, i.e., test case generation, by a new
approach using automata learning on bounded
feasible sequences. As a by-product, we also
obtain finite state approximations of the state
space of an Event-B model. The method is
well integrated with the notion of Event-B re-
finement (Section 3.1). Without being origi-
nally planned, we extended the MBT method
to work also with decomposed Event-B mod-
els (Section 3.2). Complementing a constraint-
based approach, genetically-inspired algorithm
were used to generate test data for a given test
case (Section 3.3). The implementation of the
above is done in a Rodin plug-in and was tested
on many Event-B models (Section 3.5).

New Task 12.4 Introduction of New Partners
from WP12: Enlarging of the DEPLOY project by
the two new partners will require some manage-
rial synchronisation and integration on technical,
administrative and financial activities.

Both universities UniBuc and UniPit were suc-
cessfully integrated into the project in a timely
manner. The collaboration between the team
members was also smooth. More details are
provided at the end of this executive summary.

Table 1.1: Contributions of DEPLOY Enlarged EU according to the DoW
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shops). The result are the following eleven papers given in the bibliography at the
end of this section:

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].

Moreover, the Romanian partners contributed to the following DEPLOY deliver-
ables and also the "D-Book" planned for the end of the project:

D32, D42, D43, D44, D45, D53, D54 and a "D-book" chapter.

A Rodin plug-in implementing MBT techniques for Event-B was released:

http://wiki.event-b.org/index.php/MBT_plugin

Dissemination activities. The results were regularly presented by the members
of DEPLOY Enlarged EU at several venues such as seminars, conferences, work-
shops, tutorials. A detailed list is provided below:

− October 2010 (Dagstuhl, Germany): presentation of MBT in DEPLOY at
the Dagstuhl Seminar.
Speakers: Sebastian Wieczorek (SAP) and Alin Stefanescu (UniPit)

− December 2010 (Timisoara, Romania): tutorial on DEPLOY, Rodin and
MBT at a FP7 Training on Software Services.
Speaker: Alin Stefanescu (UniPit)

− March 2011 (Sheffield, UK): invited talk on MBT in the Department of
Computer Science of University of Sheffield.
Speaker: Florentin Ipate (UniPit)

− March 2011 (Berlin, Germany): presentation at the 4th International Work-
shop on Search-Based Software Testing (SBST’11).
Speaker: Alin Stefanescu (UniPit)

− April 2011 (Turku, Finland): lecture on the UniBuc-Aabo research cooper-
ation at Aabo University.
Speakers: Luigia Petre (Aabo) and Gheorghe Stefanescu (UniBuc)

− May 2011 (London, UK): invited talk on MBT in DEPLOY at 13th CREST1

Open Workshop on Future Internet Testing (FITTEST) and Search Based
Software Engineering (SBSE).
Speaker: Alin Stefanescu (UniPit)

1CREST: Centre for Research on Evolution, Search and Testing at University College London

9



− June 2011 (Kuantan, Malaysia): presentation at the 2nd International Con-
ference on Software Engineering and Computer Systems (ICSECS’11).
Speaker: Alin Stefanescu (UniPit)

− June 2011 (Bucharest, Romania): presentation of MBT in DEPLOY at a
Romanian software company called SOFTWIN.
Speaker: Alin Stefanescu (UniPit)

− June 2011 (Thessaloniki, Greece): invited talk on MBT in DEPLOY at the
South-East European Research Centre (SEERC) in Thessaloniki.
Speaker: Florentin Ipate (UniPit)

− November 2011 (Helsinki, Finland): presentation of MBT in DEPLOY at
the lab seminar at the Computer Science Department of Aalto University.
Speaker: Alin Stefanescu (UniPit)

− February 2012 (Fontainebleau, France): MBT demo at the DEPLOY Fed-
erated Event.
Speaker: Laurentiu Mierla (UniPit)

− May 2012 (Edinburgh, UK): presentation of MBT in DEPLOY at the weekly
Computer Science Department seminar at the University of Edinburgh.
Speaker: Alin Stefanescu (UniPit)

− June 2012 (Pisa, Italy): presentations at 3rd International Conference on
Abstract State Machines, Alloy, B, and Z (ABZ’12) and 9th International
Conference on Integrated Formal Methods (iFM’12).
Speakers: Alin Stefanescu (UniPit) and Gheorghe Stefanescu (UniBuc)

Integration of the new partners within the existing consortium. Integration
of the new partners was successful. They were brought up-to-speed using a dedi-
cated training session. Further on, the collaboration with DEPLOY partners was
initiated and supported not only by participation of the project-wide meetings (in
Nice, Newcastle, Zurich, Fontainbleau) or executive meetings, but also face-to-
face meetings. Moreover, UniPit took part in the WP9 bi-weekly teleconferences.
Last but not least, young researchers, especially PhD students, were involved in
the research and the project meetings.

Below we list the face-to-face short visits (from one to four weeks) and meet-
ings (one-two days) of Romanian partners with DEPLOY partners:

− June 2010: Kick-off meeting for "DEPLOY Enlarged EU" in Darmstadt.

− July 2010: Two-days training session in Bucharest, Romania with Thai Son
Hoang (ETH Zurich) and Stefan Hallerstede (UDUS) as trainers.
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− September 2010: UniPit visited SAP in Darmstadt.

− November 2010: UniPit visited SAP in Darmstadt.

− March-April 2011: UniBuc visited Aabo in Turku.

− March 2011: UniPit visited SAP in Darmstadt.

− September 2011: UniPit visited UDUS in Dusseldorf.

− September 2011: UniPit visited SAP in Darmstadt.

− November-December 2011: UniBuc visited Aabo in Turku.

Conclusions. At the end of the project, we evaluate the project extension "En-
larged EU" as a successful part of the DEPLOY project. The outcome contributed
to the development of Event-B method, both theoretically (several papers vali-
dated by the scientific community via peer-reviewing) and practically (a Rodin
plug-in thoroughly tested on the Event-B models from the DEPLOY repository).
The collaboration between the researchers was also very good and the results
were disseminated to a wide audience. The new partners, including the young
researchers, highly appreciated the experience to work in such a large European
project on state-of-the art research and concrete industrial requirements. As for the
future, there are plans to further pursue research in the Event-B area and maintain
the existing tooling. The funding for the research on MBT after DEPLOY will
be ensured by two recently acquired projects: UDUS is part of the FP7 project
ADVANCE (2011-2014 – http://www.advance-ict.eu/) and UniPit has a new Ro-
manian grant MuVet (2012-2014 – grant no. PN-II-ID-PCE-2011-3-0688). Both
projects have MBT for Event-B as an explicit task.

Papers produced in DEPLOY Enlarged EU
[1] Denisa Diaconescu, Ioana Leustean, Luigia Petre, Kaisa Sere, and Gheo-

rghe Stefanescu. Refinement preserving translation from Event-B to register-
voice interactive systems. Technical Report no. 1028, TUCS (Turku Center
for Computer Science), 51 pp., December 2011. http://tucs.fi

[2] Denisa Diaconescu, Ioana Leustean, Luigia Petre, Kaisa Sere, and Gheo-
rghe Stefanescu. Refinement preserving translation from Event-B to register-
voice interactive systems. In Proc. of Int. Conf. on Integrated Formal Methods
(iFM’12), LNCS, vol. 7321, pp. 221–236. Springer, 2012.
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[3] Denisa Diaconescu, Ioana Leustean, Luigia Petre, Kaisa Sere, and Gheorghe
Stefanescu. Refinement of Structured Interactive Systems. Submitted to For-
mal Methods (FM’12) conference. March 2012.

[4] Radu Gramatovici, Luigia Petre, Kaisa Sere, Alin Stefanescu, and Gheo-
rghe Stefanescu. Syncronization in Timed-Interactive Systems. Submitted to
19th International Symposium on Temporal Representation and Reasoning
(TIME’12). April 2012.

[5] Alin Stefanescu, Sebastian Wieczorek, and Matthias Schur. Message chore-
ography modeling – a domain-specific language for consistent enterprise ser-
vice integration. Conditionally accepted at Software and Systems Modeling
(SoSyM) journal, 2012.

[6] Alin Stefanescu, Florentin Ipate, Raluca Lefticaru, and Cristina Tudose. To-
wards search-based testing for Event-B models. In Proc. of 4th Workshop
on Search-Based Software Testing (SBST’11) from ICSTW’11, pp.194-197.
IEEE Computer Society, 2011.

[7] Ionut Dinca, Alin Stefanescu, Florentin Ipate, Raluca Lefticaru, and Cristina
Tudose. Test data generation for Event-B models using genetic algorithms.
In Proc. of 2nd International Conference on Software Engineering and Com-
puter Systems (ICSECS’11), volume 181 of CCIS, pp. 76–90. Springer, 2011.

[8] Ionut Dinca. Multi-objective test suite optimization for Event-B models.
In Proc. of Int. Conf. on Informatics Engineering and Information Science
(ICIEIS’11), vol. 251 of CCIS, pp. 551–565. Springer, 2011.

[9] Ionut Dinca, Florentin Ipate, Laurentiu Mierla, and Alin Stefanescu. Learn
and test for Event-B – a Rodin plugin. In 3rd International Conference on
Abstract State Machines, Alloy, B, and Z (ABZ’12). LNCS, vol. 7316, pp.
361–364. Springer, 2012.

[10] Florentin Ipate, Ionut Dinca, and Alin Stefanescu. Model learning and test
generation using cover automata. Submitted to IEEE Transactions on Soft-
ware Engineering journal. January 2012.

[11] Ionut Dinca, Florentin Ipate, and Alin Stefanescu. Model learning and test
generation for Event-B decomposition. Submitted to 5th International Sym-
posium On Leveraging Applications of Formal Methods, Verification and Val-
idation (ISoLA’12). April 2012.
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Chapter 2

Event-B and Register-Voice
Interactive Systems (rv-IS)

Contributors: Denisa Diaconescu (UniBuc), Radu Gramatovici (UniBuc), Ioana
Leustean (UniBuc), Luigia Petre (Aabo), Kaisa Sere (Aabo), Alin Stefanescu
(UniPit), and Gheorghe Stefanescu (UniBuc)

The goal of this strand of work was to find ways of integrating the Event-B
and Register-Voice Interactive Systems (rv-IS) formalisms. The following plan
was pursued:

− Define a notion of refinement in rv-IS models based on a combination of
the refinement of state-based systems and Broy-like refinement of dataflow-
based interactive systems.

− Define a translation EB2IS from Event-B models to structured rv-IS models.

− Prove the translation EB2IS preserves refinement (i.e., refined Event-B mod-
els translate into refined rv-IS models, the latter notion being the proposed
rv-IS refinement).

− Use one of the known translations to pass from structured rv-IS models to
unstructured rv-IS models.

− Define a refinement preserving translation IS2EB from unstructured rv-IS
models to Event-B models.

− Use these translations EB2IS and IS2EB to: (1) enrich Event-B with rv-IS
structural operators and the associated decomposition techniques; (2) get
tool support to develop and analyze rv-IS models.
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The material in this chapter is based on several papers already accepted or
under review: [65], [66], [67], [68].

2.1 Work on Event-B (de)composition
From the above working plan, the first investigations developed a refinement no-
tion on rv-IS models and a refinement preserving translation from Event-B to
rv-IS models. Event-B is a state-based formalism dedicated to the refinement-
based development of correct parallel and distributed systems. The register-voice
interactive systems (rv-IS) formalism is a recent structural approach for develop-
ing software systems using both structural state-based as well as interaction-based
composition operators. One of the most interesting feature of the rv-IS formalism
is the structuring of the components interactions. Our aim is to study whether a
more (rv-IS inspired) structured approach of an interactive, modular system has
any effect on the correct development as designed in Event-B. More precisely,
we are interested in uncovering whether the proof obligations are significantly
eased when a certain structure is assumed in the model. Towards this end, we
need to develop an integration of Event-B and rv-IS, that would ultimately also
imply tool support to develop and analyse rv-IS models. In this section we intro-
duce the notion of refinement in the rv-IS formalism and based on it we propose
a refinement-based translation from Event-B to rv-IS, also exemplified with a file
transfer protocol modelled in both formalisms.

The register-voice interactive systems formalism (rv-IS) is a structural ap-
proach for developing software systems using both state- and interaction-based
composition operators. The aim of our study is to integrate the Event-B and rv-IS
formalisms up to a level where the key features of each formalism can be easily
translated into the other. The contribution of the section is threefold. First, we in-
troduce a scenario-based notion of refinement in rv-IS, extending the trace-based
definition of refinement of classical sequential systems. Next, we present a re-
finement preserving translation EB2IS from Event-B models to structured rv-IS
models. Finally, we argue our translation by analyzing an example: we present
a refining process for modeling a simple file transfer protocol in Event-B and we
show the associated set of refined structured rv-IS models.

One possibility to define the correctness of the EB2IS translation is via the
trace semantics. For an Event-B model M , one can define the traces associated to
all possible runnings of the model. On the other hand, one can consider the trans-
lated rv-IS model M ′ and the associated running scenarios; starting with these
scenarios and using the flattening operator, a set of traces may be associated to
the translated model M ′. The correctness problem for the EB2IS translation must
show that the translation preserves the associated traces, up to state stuttering and a
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hiding of the auxiliary variables and modules introduced by the translation. With-
out giving a formal proof that the translation is correct according to this definition,
the examples included in Subsection 2.1.6 provide evidence in this direction

2.1.1 Introduction
This section presents a refinement preserving translation from Event-B [3, 2, 29,
37, 38, 39, 16, 18] to register-voice interactive systems (rv-IS) [55, 56, 57, 45,
33, 34, 51]. The register-voice interactive systems formalism (rv-IS) is a recent
structural approach for developing software systems using both structural state-
and interaction-based composition operators.

Interactive computation is an important computer science topics. Often, the
term is related to HCI (Human-Computer Interaction), the particular case when
one of the interacting entities is human. While able to deal with such cases as
well, our approach is more process-process interaction oriented. In this latter case,
there are already many successful formalisms, including models as Petri nets [58],
process algebra [24], π-calculus [41], dataflow networks [26, 28], event structures
[62], temporal logics formalisms [44, 40], etc. The approach used in the present
section integrates a dataflow like interaction model with a classical state-based
computation model.

Specifically, we use the register-voice interactive systems formalism with the
following characteristic features.

1. The model is based on register-voice interactive systems (rv-IS) [55, 56].
This class of models includes register machines and dataflow networks, is
space-time invariant, is compositional, and may describe computations ex-
tending both in time and in space. The specific application area for rv-IS
models is the class of open, interactive systems.

2. The formalism includes a programming language style which uses novel
techniques for the syntax and the semantics to support the computation in
the space paradigm. To this end, it uses rv-programs [55, 56] whose syntax
and operational semantics are based on finite interactive systems (FISs) and
running scenarios [54, 55, 56].

3. For specification of the rv-systems the formalism uses relations between
input and output interfaces [55, 56]. These interfaces are complex spatial
and temporal structures built up from registers and voices, see, for instance
the interfaces used in Agapia v0.1 programming langage [33].

The aim of our study is to integrate the Event-B and rv-IS formalisms up to
a level where the key features of each formalism can be easily translated into the
other.
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The contribution of this section is threefold. First, we introduce a scenario-
based notion of refinement in rv-IS models, extending the trace-based definition
of the refinement of classical sequential systems. Next, we present a refinement
preserving translation EB2IS form Event-B models to structured rv-IS models.
Finally, we argue our translation by analyzing an example: we present a refining
process for modeling a simple file transfer protocol in Event B and we show the
associated set of refined structured rv-IS models.

To summarize, roughly half of the above roadmap is, at least partially, dealt
with in this section.

The chapter is organized as follows. The first two sections contain brief intro-
ductions to Event-B and register-voice interactive systems. The next section tackle
the scenario equivalence problem, in particular defining a sub-scenario stuttering
equivalence. The core section is Section 2.1.5 where a scenario based notion
of refinement for register-voice interactive systems is introduced. The next sec-
tion describes a general translation from Event-B models to rv-IS models. Section
2.1.7 presents a detailed example dealing with a “file transfer protocol”: the initial
model and two refined versions are first developed in Event-B, then translated into
the rv-IS framework; then, it is shown that the translation preserves refinement. A
brief section with final comments and the references conclude the section.

2.1.2 Event-B

Introduction to Event-B

Event-B Language. In Event-B, a system specification (model) is defined us-
ing the notion of a machine [48] operating on an abstract state. Such a machine
encapsulates the model state, represented as a collection of model variables, and
defines operations on this state. Thus, it describes the behavior of the modeled
system, also referred to as the dynamic part. A machine may also have an accom-
panying component, called context, which contains the static part of the system. A
context can include user-defined carrier sets, constants and their properties, which
are given as a list of model axioms. The general form of an Event-B model is
illustrated in Fig. 2.1. The relationship between a machine and its accompanying
context is expressed by the keyword Sees, denoting a structuring technique that
allows the machine access to the contents of the context.

A machine is uniquely identified by its name M . The state variables, v, are
declared in the Variables clause and initialized by the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants clause.
The invariant clause may also contain other predicates defining properties that
should be preserved over the state of the model.

The dynamic behavior of the system is defined by a set of atomic events spec-
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ified in the Events clause. Generally, an event can be defined as follows:

evt =̂ any vl where g then S end,

where the variable list vl contains new local variables (parameters) of the event,
the guard g is a conjunction of predicates over the state variables v and vl, and the
action S is an assignment to the state variables.

The occurrence of events represents the observable behavior of the system.
The event guard defines the conditions under which the action can be executed,
i.e., when the event is enabled. If several events are enabled at the same time, any
of them can be chosen for execution non-deterministically. If none of the events
is enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A determin-
istic assignment, x := E(x, y), has the standard syntax and meaning. A non-
deterministic assignment is denoted either as x :∈ Set, where Set is a set of
values, or x :| P (x, y, x′), where P is a predicate relating initial values of x, y to
some final value of x′. As a result of such a non-deterministic assignment, x can
get any value belonging to Set or according to P .

Event-B Semantics. The semantics of Event-B actions is defined using so-
called before-after (BA) predicates [3, 48]. A before-after predicate describes
a relationship between the system states before and after execution of an event, as
shown in Fig. 2.2. Here x and y are disjoint lists (partitions) of state variables, and
x′, y′ represent their values in the after-state. A before-after predicate for events
is constructed as follows:

BA(evt) = ∃vl. g ∧ BA(S).

Here vl stand for some local variables of the event evt, the guard g is a conjunction
of predicates over the state variables v and vl, and the action S is an assignment
to the state variables.

Machine M
Variables v
Invariants I
Events
Init
evt1
· · ·
evtN

Sees−−−→

Context C
Carrier Sets d
Constants c
Axioms A

Figure 2.1: A machine M and a context C in Event-B
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Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Set x′ ∈ Set ∧ y′ = y

x :| P (x, y, x′) x′ ∈ { v | P (x, y, v) } ∧ y′ = y

Figure 2.2: Before-after predicates

The semantics of a whole Event-B model is formulated as a number of proof
obligations, expressed in the form of logical sequents and detailed in [3].

System Development. Event-B employs a top-down refinement-based approach
to formal system development. Development starts from an abstract system spec-
ification that models some of essential functional requirements. While capturing
more detailed requirements, each refinement step typically introduces new events
and variables into an abstract specification. These new events correspond to stut-
tering steps that are not visible in the abstract specification. We call such model
refinement as superposition refinement. Moreover, Event-B formal development
supports data refinement, allowing us to replace some abstract variables with their
concrete counterparts. In that case, the invariant of a refined model formally de-
fines the relationship between the abstract and concrete variables; this type of
invariants are called gluing invariants.

To verify the correctness of a refinement step, we need to prove a number of
proof obligations for a refined model, also detailed in [3].

The Event-B refinement process allows us to gradually introduce implementa-
tion details, while preserving functional correctness during stepwise model trans-
formation. The model verification effort and, in particular, automatic generation
and proving of the required proof obligations, are significantly facilitated by the
provided tool support – the RODIN platform [2, 59, 48, 4].

Let us note here the quintessential feature of Event-B and its associated RODIN
platform. Modeling in Event-B is semantically justified by proof obligations. Ev-
ery update of a model generates a new set of proof obligations in the background.
It is this interplay between modeling and proving that sets Event-B apart from
other formalisms. Without proving the required obligations, we cannot be sure of
correctness of a model. The proving effort thus encourages the developer to struc-
ture formal model development in such a way that manageable proof obligations
are generated at each step. This leads to very abstract initial models so that we
can gradually introduce into a system model various facets of the system. Such a
development method fits well when we have to describe complex algorithms.
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2.1.3 Register-voice interactive systems

Interactive computation is an important computer science topics. Often, the term
is related to HCI (Human-Computer Interaction), the particular case when one
of the interacting entities is human. While able to deal with such cases as well,
our approach is more process-process interaction oriented. In this latter case, there
are many successful formalisms, including: (1) true concurrency models like Petri
nets, dataflow networks, event structures, etc.; or (2) interleaving models as pro-
cess algebra, π-calculus, temporal logics formalisms, communicating automata,
etc. The approach used in the present section integrates this type of interaction
models with classical state-based computation models.

Specifically, we use the model, the core programming language, the specifica-
tion formalism and the analysis techniques used for modeling, programming and
reasoning about interactive computing systems that have been developed by the
last author and coworkers in the last years, see [56, 57, 45, 33, 34, 51]. The formal-
ism is built on top of register machines, closing them with respect to space-time
duality operator. It has the following characteristic features:

1. The model consists of register-voice interactive systems (rv-IS). The class
includes register machines, is space-time invariant, is compositional and
may describe computations extending both in time and space. Its specific
application area is the class of open, interactive systems.

2. The programming language uses novel techniques for its syntax and se-
mantics to support computation in the space paradigm. To this end, it uses
rv-programs whose syntax and operational semantics are based on finite in-
teractive systems (FISs) and running scenarios.

3. The specification of the rv-systems uses relations between their input and
output interfaces. These interfaces are complex spatial and temporal struc-
tures built up from registers and voices.

The rest of this subsection includes a glimpse of the approach.

Grids and scenarios.

A grid is a two-dimensional rectangular area filled in with letters of a given alpha-
bet. In our interpretation the columns correspond to processes, the top-to-bottom
order describing their progress in time. The left-to-right order corresponds to
process interaction in a nonblocking message passing discipline. This means, a
process sends a message to the right, then it resumes its execution. An example is
presented in Fig.2.3(a).
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A scenario is a grid enriched with data around each letter. The data may
be given in an abstract form as in Fig. 2.3(b), or in a more detailed form as in
Fig. 2.3(c)&(d). In (a) there are grid letters, only. In (b), additional information
is inserted: (1) abstract notations for (memory) states, denoted here by numbers
and placed at the north and the south borders of the grid letters; and (2) abstract
notations for (interaction) classes, denoted here by capital letters and placed at
the west and the est borders of the letters. Scenarios as in (b) are abstract and are
used to check if a grid is recognized by a FIS. In (c) a more concrete scenario is
presented where also data are associated to states and classes. These latter type
of scenarios are used for representing rv-programs runs. Finally, in (d) a run of
a structured rv-program is shown: for structured rv-programs, no state and class
names are needed, so there are no numbers and capital letters around the grid
letters as in (c).

(a)

aabbabb
abbcdbb
bbabbca
ccccaaa

(c)

1:x=4 1: 1:

A:
↓

→ X →
↓

B:tx=4
↓

→ Y →
↓

C:tx=4
↓

→ Z →
↓

D:

2:x=2 2:y=4 2:z=4

A:
↓

→ U →
↓

B:tx=2
↓

→ V →
↓

C:tx=2
↓

→ W →
↓

D:

3:x=1 2:y=4 2:z=2

(b)

1 1 1
AaBbBbB
2 1 1
AcAaBbB
2 2 1
AcAcAaB
2 2 2

(d)

x=4 . .

.
↓

→ X →
↓

tx=4
↓

→ Y →
↓

tx=4
↓

→ Z →
↓

.

x=2 y=4 z=4

.
↓

→ U →
↓

tx=2
↓

→ V →
↓

tx=2
↓

→ W →
↓

.

x=1 y=4 z=2

Figure 2.3: A grid (a), an abstract scenario (b), and concrete scenarios (c) and (d).

Spatio-temporal specifications.

A spatio-temporal specification combines constraints on both spatial and temporal
data.

For the spatial data, we use the common data structures and their natural rep-
resentations in memory.

For representing temporal data we use streams: a stream is a sequence of data
ordered in time and is denoted as a0_a1_. . . , where a0, a1, . . . are the data laying
on the stream at time 0, 1, . . . , respectively.
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A voice is defined as the time-dual of a register. Voices are simple temporal
structures, represented on streams, that holds natural numbers. The value of a
voice can be modified in a location and then propagated within the system. A
voice can be “listened” at various locations, at each location the piece of stream
representing the voice displaying a particular value. Voices may be implemented
on top of a stream in a similar way registers are implemented on top of a Turing
tape, for instance specifying their starting address and their length. Most of usual
data structures have natural temporal representations. Examples includes timed
booleans, timed integers, timed arrays, timed lists, etc.

The notation ⊗ is used for the product of memory states, while _ for the
product of interaction classes; N⊗k denotes N⊗. . .⊗N (k terms) and N_k denotes
N_. . . _N (k terms).

A simple spatio-temporal specification

S : (m, p)→ (n, q)

is a relation S ⊆ (N_m×N⊗p)×(N_n×N⊗q), wherem (resp. p) is the number of
input voices (resp. registers) and n (resp. q) is the number of output voices (resp.
registers). It can be described as a relation between tuples, the notation being

< v | r >→ < v′ | r′ >,

where v, v′ (resp. r, r′) are tuples of voices (resp. registers). More general spatio-
temporal specifications may be introduced using complex interface types, not only
registers and voices.

Z

YX

ba

ba

(a) a “back arrow” (b) an isomorphic representation

a b

a b

X Y

Z

XY q 0 0
| x+−q
x−+q |
0 0 xZ |

(c) the grid in (b) as picture (d) an “equivalent” grid in textual representation

Figure 2.4: Modeling "back arrows"
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Examples. We describe below a few very simple specifications. Actually, they
give the semantics for the following wiring constants used in Fig. 2.4(c):

c0 = , c1 = , c2 = , c3 = , c4 = , c5 =

The natural relational interpretation of these constants is:

c0 = ∅ (empty cell);
c1 = {〈 | x〉 7→ 〈 | x〉 : x ∈ N} (vertical identity);
c2 = {〈x | 〉 7→ 〈x | 〉 : x ∈ N} (horizontal identity);
c3 = {〈 | x〉 7→ 〈x | 〉 : x ∈ N} (speaker, or space-to-time converter);
c4 = {〈x | 〉 7→ 〈 | x〉 : x ∈ N} (recorder, or time-to-space converter);
c5 = {〈x | y〉 7→ 〈x | y〉 : x, y ∈ N} (double identity, or cross).

These basic specifications are extended in a straightforward way to the case of
complex data associated to a wire, so x above may have any data type not only be
a natural number.

Specifications may be composed horizontally and vertically, as long as their
types agree. For instance, given two specifications S1 : (m1, p1) → (n1, q1) and
S2 : (m2, p2) → (n2, q2), their horizontal composition S1#S2 is defined only if
n1 = m2; the type of S1#S2 is (m1, p1 + p2)→ (n2, q1 + q2) and the result is the
expected relational composition via connecting voices.

The comments above were restricted to register and voice data types. How-
ever, the approach can be easily extended to deal with complex spatial and tem-
poral data types, for instance the interface types used in Agapia v0.1 language
[33].

Syntax of structured rv-programs.

The type of a structured rv-program P , denoted by

P : (w(P ), n(P ))→ (e(P ), s(P )),

collects the types at the west, north, east and south borders of its scenarios. In
general, these are relatively complex types built up from atomic boolean and in-
teger types - see the concrete types used in Agapia v0.1 programming language
[33].

Syntax of structured rv-programs is defined as follows:

P ::= X | P % P | P # P | P $ P | if(C) then {P} else {P}
| while_t(C) {P} | while_s(C) {P} | while_st(C) {P}

The starting blocks for the construction of structured rv-programs are called
modules. The syntax of a module is given as follows:

22



module module_name
{listen temporal_variables}{read
spatial_variables}{
code

}{speak temporal_variables}{write
spatial_variables}

where the read (resp. listen) instruction collects the spatial (resp. temporal)
input and the write (resp. speak) instruction returns the spatial (resp. tempo-
ral) output. The code consists in instructions similar to the C code.

The instruction that reads the input or returns the output are sometimes omitted
by taking into consideration the following conventions: any variable not declared
in the code will be considered an input variable and any variable that appears in
the code will be considered an output variable.

The operations on structured rv-programs are briefly described below. More
details and examples may be found in [55, 56, 33, 34].

1. Composition: Due to their two dimensional structure, programs may be
composed horizontally and vertically, as long as their types agree. They can
also be composed diagonally by mixing the horizontal and vertical compo-
sition.

(a) For two programs Pi : (wi, ni) → (ei, si), i = 1, 2, the horizontal
composition P1#P2 is well defined only if e1 = w2; the type of the
composite is (w1, n1 ⊗ n2)→ (e2, s1 ⊗ s2).

(b) Similarly, the vertical composition P1%P2 is defined only if s1 = n2;
the type of the composite is (w1

_w2, n1)→ (e1
_e2, s2).

(c) The diagonal composition P1$P2 is a derived operation - it connects
the east border of P1 to the west border of P2 and the south border of
P1 to the north border of P2; it is defined only if e1 = w2 and s1 = n2;
the type of the composite is (w1, n1)→ (e2, s2).

2. If: For the “if” operation, given two programs with the same type P, Q :
(w, n) → (e, s), a new program if(C) then {P} else {Q} : (w, n) →
(e, s) is constructed, for a condition C involving both, the temporal vari-
ables in w and the spatial variables in n.

3. While: There are various possible extensions of the while statement.

(a) For a program with dummy interaction interface P : (0, n) → (0, n),
a temporal while is defined as a natural extension of the usual “while”
statement, namely while_t(C){P}, where C is a condition on the spa-
tial variables in n; the type of the result is (0, n)→ (0, n).
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(b) Similarly, for a program with a dummy state interface P : (w, 0) →
(w, 0), a spatial while is defined as while_s(C){P}, where C is a
condition on the temporal variables in w; the type of the result is
(w, 0)→ (w, 0).

(c) A spatio-temporal while may be defined for a program P : (w, n) →
(w, n), namely while_st(C){P}, where C is a condition on the tem-
poral variables in w and the spatial variables in n; the type of the result
is (w, n)→ (w, n).

The temporal while statement may be extended to the case of programs with
nonempty interaction interfaces. In such a case, as the while loop may be executed
an indefinite number of times depending on its current data, the west interface has
to provide as many interaction data as needed. One may introduce an appropriate
construct forall_t{P} or repeat_t{P}, for a P : (w, n)→ (e, n), which repeats
the application of P if its temporal input/output interfaces fits. A similar extension
may be applied to the spatial while. Finally, let us notice that no such problems
appear in the case of the spatio-temporal while.

Operational semantics of structured rv-programs.

The operational semantics is given in terms of scenarios. Scenarios are built up
with the following procedure:

1. Each cell of the associated grid has as label a module name.

2. An area around a cell may have additional information. For example, if a
cell has the information x = 2, that means that in that area x is updated to
be 2.

3. The scenario is built from the current rv-program by reducing it to sim-
ple compositions of spatio-temporal specifications w.r.t. the syntax of the
program, until we reach basic blocks, e.g. modules.

We will explain better the operational semantics by considering an example.
The following is a structured rv-program Perfect which verifies if a number n is
perfect:

(I1 # I2 # I3) % while_t(x > 0){P # D # M}

The modules are listed in Table 2.1.
In our rv-IS program we can imagine that we have three processes: one gen-

erates all the number in the set {n/2, . . . , 1} (module P), one checks if a number
is a divisor of n (module D) and the last one updates a variable z (module M).
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module I1
{listen nil}{read n}{
tn:tInt; x:Int;
tn = n; x = n/2;

}{speak tn}{write x}

module I2
{listen tn}{read
nil}{
y:Int;
y = tn;

}{speak tn}{write y}

module I3
{listen tn}{read
nil}{
z:Int;
z = tn;

}{speak nil}{write z}

module P
{listen nil}{read x}{
td:tInt;
tx = x; x = x-1;

}{speak tx}{write x}

module D
{listen tx}{read y}{
if(y % tx !=0){
tx = 0;};

}{speak tx}{write y}

module M
{listen tx}{read z}{
z = z - tx;

}{speak nil}{write z}

Table 2.1: The modules of the Perfect rv-IS program

Modules I1, I2 and I3 are used for initializations. At the end of the program, if
the variable z is 0, then the number n is perfect.

In order to show how we can construct a scenario for the rv-IS program above
let us consider a concrete example for n = 6. The scenario for n=6 is presented
in Figure 2.5.

In the first line of the scenario we initialize the processes with the needed
informations: module I1 is reading the value n = 6 and provides the first process
with x = 3 and declare a temporal variant of n, namely tn = 6, that will be used
by modules I2 and I3 for the other initializations; modules I2 and I3 use the
temporal variable tn for initializating the other two processes with the initial value
of n, namely y = 6, z = 6, respectively.

In the next step, module P produces a temporal data tx = 3 (tx is equal with
the data x of the first process) and decrease x. Module D verifies if tx is a divisor
of y and, if no, it resets the value of tx to 0. Finally, module M decreases the value
of z by tx. Notice that module M decreases the value of z only with the divisors
of the initial variable n. We continue this steps until the variable x becomes 0.

The same computing scenarios may be generating with many other rv-programs.
The above program (and explanation) corresponds to the construction of scenarios
by rows and it exhibits a kind of parallel imperative programming style. Below
we describe another rv-program which constructs the same scenarios by columns,
reflecting a dataflow computing paradigm. To this end, a few more terminating
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x=6 . .

.
↓

→ I1 →
↓

tx=6
↓

→ I2 →
↓

tx=6
↓

→ I3 →
↓

.

x=3 y=6 z=6

.
↓

→ P →
↓

tx=3
↓

→ D →
↓

tx=3
↓

→ M →
↓

.

x=2 y=6 z=3

.
↓

→ P →
↓

tx=2
↓

→ D →
↓

tx=2
↓

→ M →
↓

.

x=1 y=6 z=1

.
↓

→ P →
↓

tx=1
↓

→ D →
↓

tx=1
↓

→ M →
↓

.

x=0 y=6 z=0

Figure 2.5: A scenario for the Perfect rv-IS program

modules have to be used - they are presented in Table 2.2.
The program Perfect-2 is

(I1 % while_t(x > 0){P} % E1)
# (I2 % while_t(tx != -1){D} % E2)
# (I3 % while_t(tx != -1){M} % E3)

The scenarios of this program are the scenarios of the Perfect program completed
with a bottom row which includes the terminating modules.

module E1
{listen nil}{read x}{
tx = -1;

}{speak tx}{write x}

module E2
{listen tx}{read y}{

}{speak tx}{write y}

module E3
{listen tx}{read z}{

}{speak nil}{write z}

Table 2.2: The terminating modules of the Perfect-2 rv-IS program
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2.1.4 Scenario equivalence
Before going to introduce a refinement on rv-IS models we have to look carefully
to the scenario equality in the presence of wiring constants: identities, space-
to-time and time-to-space transformers (e.g., recorders or speakers), etc. These
constants have a crucial role in capturing the meaning of state- and class- stuttering
in scenarios.

A trace is an abstract representation of a run of a computing system. Opera-
tional semantics is often described in terms of “paths”, i.e., alternating sequences
of states and actions. In some approaches, traces are the projection of paths on
states, therefore they are sequences of states. Alternatively, on can project the
paths on actions and consider a trace to be a sequence of actions. In this latter case,
if the system is deterministic, from the initial state and the trace of actions one can
recover the states by applying the actions, hence the action-traces approach is
more informal that the state-trace approach. The procedure can be applied also
to nondeterministic systems, but in that case it leads to a set of state-traces asso-
ciated to an action-trace. Generally, it is obvious that from a sequence of states
one cannot infer which actions were performed, so the action-traces include more
information on the system executions than state-traces.

From this classification point of view, it is worthwhile to mention that the
refinement approach is mostly using state-traces.

The notion of running scenarios for rv-programs is a natural extension of the
notion of running paths of sequential computing systems. The stuttering relation
on traces (i.e., state repetition) is easy to understand. However, defining scenario
equality up to a kind of “stuttering equivalence” (i.e., state and class repetition)
is more challenging. It is not only the case that processes or communication may
stutter, but also more complex phenomena as process or job migration have to be
taken into account.

Traces and scenarios

In the following, a dummy interface will be shortly denoted by ‘.’ (in Agapia v0.1
it is denoted by nil) and a not-dummy interface by ‘*’.

Grids vs. scenarios. A scenario is built up from action cells with state and class

data around. The basic construction
n

w X e
s

is expanded to larger scenarios

applying the gluing rule: the state or class data on the connecting interfaces should
be the same.

The additional information around a cell may be included into the cell, for
instance as follows w,n,X,e,s . By using such extended letters, scenarios may be
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represented as simple grids. Actually, they are particular grids where the neigh-
borhood cells satisfy the required gluing conditions. For instance, the following
grid with one row and two columns w1,n1,X1,e1,s1 w2,n2,X2,e2,s2 represents a
valid scenario only if e1=w2.

To conclude, scenarios may be represented as particular grids over extended
alphabets.

Getting traces from scenarios: The flattening operator. The above coding of
scenarios by grids may be used to extend the definition of the flattening operator
[ [55] from grids to scenarios. Subsequently, this flattening operator may be used
to associate traces to scenarios by the following procedure:

1. First, apply the flattening operator [ to scenarios represented as grids.

2. Than, project the resulting traces on states and classes.

Formally, this defines a function

[ : Sc(S,C,A)→ Tr(S ∪ C)

where Sc(S,C,A) denotes the scenarios with states in S, classes in C and actions
(i.e., cells’ labels) in A and Tr(S ∪ C) denotes the set of traces over S ∪ C.

For example, consider the scenario v1 and the associated grid g(v1), where

v1 =

1 2
.X . Y .
3 4

aZbU c
5 6
. V .W .
7 8

and g(v1) =

∗ ∗
. (., 1, X, ., 3) . (., 2, Y, ., 4) .

∗ ∗
∗(a, 3, Z, b, 5)∗(b, 4, U, c, 6)∗

∗ ∗
. (., 5, V, ., 7) . (., 6,W, ., 8) .

∗ ∗

. An associated trace in

[(g(v1)) is (., 1, X, ., 3)(., 2, Y, ., 4)(a, 3, Z, b, 5)(b, 4, U, c, 6)(., 5, V, ., 7)(., 6,W, ., 8),
and by projection on states and classes we get the following trace of state and class
changes (., 1, ., 3)(., 2, ., 4)(a, 3, b, 5)(b, 4, c, 6)(., 5, ., 7)(., 6, ., 8).

Notice that the configuration of the system is not clearly represented in such
a trace. Indeed, the trace contains only the changes regarding the local states and
classes of the scenario configuration, but not the states and classes positions in
the scenario. In order to bypass this shortcoming, one can use explicit localiza-
tion of the variables. For instance, ‘6’ might be explicitly represented as ‘p2.t2.6’
meaning that 6 is the state of the 2nd process after the 2nd transaction (or, sym-
metrically, as ‘t2.p2.6’).

On the other hand, the information is slightly duplicated in these traces. In-
deed, at each not-dummy interface which connect two cells, the involved states or
classes have the data repeated two times in the trace. One example is class ‘b’ in
the above trace. This should not create problems as traces are normally considered
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up to a stuttering invariance. However, this stuttering relation is more tricky due to
the intrinsic parallelism of the scenario model. Indeed, the stuttering relation may
not be not easily detected into a resulting traces as the stuttered states or classes
are not necessarily one next to the other in a trace.

The number of traces associated to a scenario is generally huge: for instance a
5×5 scenario has at least 701149020 associated flattened traces (the number may
be larger if there are dummy interfaces in the scenario).

Flattening does not commute with refinement. Notice that the flattening op-
erator does not commute with the cells’ refinement (i.e., with the substitution of
complex grids for cells), this being a main source of difficulties in using trace
semantics for concurrent systems.

For example, suppose we start with a high-level communication v =
∗ ∗
∗X∗Y ∗
∗ ∗

,

which forces Y to be done after X . Suppose we refine an action Z as “Zb, fol-
lowed by Zc, followed by Za”, where Zb, Zc, Za collects the groups of actions
before, during, and after communication, respectively. Moreover, we suppose the
actions in Zb (the actions before the communication) and in Za (the actions after
the communication) are internal actions whose interaction interfaces are nil. Then

v is refined as v1 =

∗ ∗
.Xb . Yb .
∗ ∗
∗Xc∗Yc∗
∗ ∗

.Xa .Ya .
∗ ∗

and

− [(v) = {XY }, and by refinement we get a unique trace {XbXcXaYbYcYa}

while

− [(v1) = {XbXcXaYbYcYa, XbXcYbXaYcYa, XbXcYbXaYcYa,
XbYbXcXaYcYa, XbYbXcYcXaYa}.

To conclude, trace semantics does not preserve refinement for parallel rv-IS
like systems.

Scenario equivalence: 1. Dealing with dummy interfaces

Scenario equivalence up to shifting of sub-scenarios with dummy interfaces.
In a scenario, the dummy cells, or more generally sub-scenarios with dummy in-
terfaces, may be shifted preserving the scenario structure. As an example, remark
that the following scenarios are equivalent
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v1 =

∗ ∗
∗Xb .Yb∗
∗ ∗
∗Xc∗Yc∗
∗ ∗

, v2 =

∗ ∗
. .Yb∗
∗ ∗
∗Xb . .
∗ ∗
∗Xc∗Yc∗
∗ ∗

, and v3 =

∗ ∗
∗Xb . .
∗ ∗

. .Yb∗
∗ ∗
∗Xc∗Yc∗
∗ ∗

Notice that the flattening operator on grids [ does not take into account the
interfaces, in particular dummy interfaces, and it constraints the associated traces
to preserve the formal causal top-down and right-left order of the grid cells. In
order to get rid of this false causality we apply the following procedure:

1. First, consider all scenarios equivalent (via shifting) to the original one.

2. Next, go to the associated grids with extended letters obtained by inserting
the state and class data into the cells.

3. Finally, apply the flattening operator [ on the resulting grids (over the ex-
tended alphabet).

This way, for instance, in the traces associated to v1 one can find also the trace
YbXb XcYc of v2 with Yb before Xb which is not directly possible from v1.

Flattening vs. refinement. Continuing the example in the previous subsubsec-
tion, we remark that v was refined as v1, which is also equivalent with v2, v3 and
v4, where

v1 =

∗ ∗
.Xb . Yb .
∗ ∗
∗Xc∗Yc∗
∗ ∗

.Xa .Ya .
∗ ∗

. v2 =

∗ ∗
. . Yb .
∗ ∗

.Xb . .
∗ ∗
∗Xc∗Yc∗
∗ ∗

.Xa .Ya .
∗ ∗

. v3 =

∗ ∗
.Xb . Yb .
∗ ∗
∗Xc∗Yc∗
∗ ∗

. .Ya .
∗ ∗

.Xa . .
∗ ∗

v4 =

∗ ∗
. . Yb .
∗ ∗

.Xb . .
∗ ∗
∗Xc∗Yc∗
∗ ∗

. .Ya .
∗ ∗

.Xa . .
∗ ∗

Even more equivalent scenarios are obtained if Xb, Yb, Xa, Ya are split into further
sub-actions. Considering the equivalent grids v2, v3, v4 one gets even more traces
associated to this refined grid v1 (i.e., traces with Yb before Xb or with Ya before
Xa).

To conclude, refinement may work well with grids, even with dummy inter-
faces, but not with the sets of flattened traces associated to grids.
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Scenario equivalence: 2. Structural dependencies

The components of the atomic scenario cell v =
s

A U B
t

are denoted as follows

(using the north / west / east / south / center positions):

s=v.n, A=v.w, B=v.e, t=v.s, U=v.c.

For a scenario w, represented as a grid, we built up an associated X depen-
dencies graph DX(w) representing its cells and their connections as follows:

1. The graph DX(w) has as nodes the inputs and the outputs of w and the non-
constants cells; the latter are the cells with labels not in a given set X of
wiring constants. Each node C corresponding to a cell has four connecting
ports C.α with α ∈ {w, n, e, s}.

2. In DX(w) there is an edge between C1.i and C2.j if the i-th border of C1
is connected with the j-th border of C2 by a wire built up from a chain of
constants in X .

An example is shown below:

w =

XY
x+q 0 0
+Z q 0

0 x++ q
0 0 xW

;

D(w) : (2, 2) → (2, 2) is the graph with 2 inputs on
each north and west borders, 2 outputs on the east
and south borders, and the edges:
{(in1.n,X.n), (in2.n, Y.n), (in1.w,X.w), (in2.w, Z.w),
(X.e, Y.w), (X.s, Z.n), (Y.s,W.n), (Z.e,W.w),

(Y.e, out1.e), (W.e, out2.e), (Z.s, out1.s), (W.s, out2.s)}.

The constants used above are: vertical, horizontal, cross, speaker and recorder
identities - see the informal presentation below and the semantics formally defined
in Section 3. For instance, 4 crosses, a speaker and a recorder connect Y.s with
W.n in the example above.

Definition: Let X be a set of constant cells used for wiring. We say two
scenarios v, w are X structurally equivalent if the associated X dependencies
graphs DX(v) and DX(v) are isomorphic.

The definition may be instantiated upon the set of specified connections X ,
particularly for the sets Connect-1 and Connect-2 below. One may consider two
types of notation for these wiring constants: a textual notation (column 1, below)
and a kind of mathematically notation (column 2, below).

The set Connect-1 consists of:
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h horizontal line (the message is passing);
v vertical line (the process stays active, doing nothing);
c + cross (the process lets the message pass and is doing nothing);
0 0 empty cell (the process is terminated and no message is passing);
s x speaker (the process passes its state as a message and terminates);
r q recorder (a terminated process grabs a message and becomes active

starting from the state specified by the message).

The set Connect-2 is Connect-1 completed with the following “branching con-
nectors”:

a active speaker (the process passes its state as a message and remains
active);

t transparent recorder (a terminated process sees a message, becomes
active starting from the state specified by the message, and lets the mes-
sage pass);

k terminate a process;
b block a message.

In this section we only use the constants in Connect-1, hence the prefix X in
“X structurally equivalent” relation will be omitted in the forthcoming presenta-
tion.

Example 1. A first example of structurally equivalent scenarios is:

v =
X
Y

and w =
X
x
q
Y

(the trace below corresponds to the parssing
1 2
3 5
4 6

of w)

Explanation: In v there is only one possible trace XY : a process p1 has two
transactions to do, first it is doing X, then Y. In the equivalent w scenario, there are
two processes and three transactions. One possible trace (out of 42) is XhshrY ,
corresponding to the flattening order described above (next to w). It says that: p1
is doing X , while p2 is still unborn letting the message to pass; then p1 passes its
state to p2 and it terminates, ignoring the next message; next, p2 grabs p1’s state
and activates itself with that states; finally, p2 executes Y , receiving the message
from the environment (the one ignored by p1).

Example 2. A more complex example of structurally equivalent scenarios is:
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v =
X Y
ZW

and w =

XY
x+q 0 0
+Z q 0

0 x++ q
0 0 xW

(the parssing

1 3 6 9 15
2 4 8 14 22
5 7 10 18 23
11 12 17 19 24
13 16 20 21 25

is used in the

trace below)
Explanation: In v there are two processes and two transactions. A possible

trace for v (out of 2) is XY ZW saying that: p1 is doing X and passes message to
p2 which is doing Y ; then p1 is doing Z and passes message to p2 which is doing
W . On the other hand, there are a huge number of traces in w (i.e., 701149020),
one of them being XsY chhcrhZ0s00h0crcvs00rW , corresponding to the order
shown next to w above. This describes a complex execution of the same basic
tasks X, Y, Z,W , now using 5 processes and 5 transactions: process p1 is doing
X and passes message to p2; then it sends its state to p2 and terminates; p2 is
doing Y and passes a message to p3; then p2 does nothing, ignoring the message
from p1, as well; p1 ignores the message from the environment, and the same
is doing p3 with the message of p2; then p2 does nothing, ignoring the message
from p1, as well; p3 grabs the message of p1 and it activates itself with the state
of p1; next, p4 ignores the message from p3; then, p3 is performing task Z; and
so on. The difficulty in finding the explanation for the chosen trace execution
of the above scenario is obvious, while an explanation for the whole 701149020
trace-based executions is probably completely meaningless. On the other hand,
the meaning of activities specified by the scenario w is pretty much clear from its
given two-dimensional specification. To conclude, traces are not appropriate for
representing the runs in parallel rv-IS like computing systems.

Example 3: Modeling "back arrows". In the examples to follow we will often
use a shortcut notation: scenarios with back-arrows. An example is presented in
Fig. 2.4(a).

The plain scenarios for modeling scenarios with "back arrows" are easily de-
scribed as in Fig. 2.4(c). Plain scenarios associated to scenarios with back arrows
are a particular case of the kind of scenarios presented in this subsection. This
allows us to extend the structural equivalence definition to scenarios with back-
arrows.

Scenario equivalence: 3. Structural extension

A next discussion on scenario comparison is related to a kind of “structural exten-
sion” relation, i.e., with the possibility to have more internal causality structure in
a refined model.
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We say a scenario w X structurally extends a scenario v if the dependencies
graph DX(v) of v is a subgraph of DX(w) and, moreover, DX(w) has the same
nodes and the same inputs and outputs asDX(v). In other words, while having the
same non-constants cells (i.e., the cells not inX are the same) and the same inputs
and outputs, the refined scenario w may have more internal connections than v.

For an example, consider the scenarios

v =

∗ ∗
.Xb . Yb .
∗ ∗
∗Xc∗Yc∗
∗ ∗

.Xa .Ya .
∗ ∗

and w =

∗ ∗
.Xb∗Yb .
∗ ∗
∗Xc∗Yc∗
∗ ∗

.Xa .Ya .
∗ ∗

Then, w is a structural extension of v having an additional not-dummy connection
between Xb and Yb.

Scenario equivalence: 3. Sub-scenario stuttering

Finally, we consider sub-scenarios stuttering. This allows to insert or remove sub-
scenarios of a scenario, provided the connecting state and class interfaces with the
remaining scenario does not change.

Let v be a scenario and c a “whole” in v, i.e., a non-selfintersecting path via
neighboring states and classes with an empty contents. Let w be a scenario with
the same interface as c. If we replace in v the whole c by w we get a new sce-
nario v{w/c} considered to be in an 1-step stuttering relation with v, denoted
v =1St v{w/c}. The scenario stuttering equivalence =St is the equivalence rela-
tion generated by the 1-step stuttering relation =1St.

Actually, the stuttering equivalence =St can be obtained as the symmetric,
reflexive, and transitive closure of =1St.

As an example, we consider the scenarios v and w described in the pictures
below (for the sake of simplicity, the data around the cells are omitted)

v =

a b c d
e f g h
i j k l
m n o p

and w =

a b . c d
e f X g h
. Y Z U .
i j V k l
m n . o p

.

The “whole” in v consists of a circular line corresponding to the lines inserted in
the picture; one possible description is (starting from the center): up-down-left-
right-down-up-right-left. Suppose the cross represented by X,Y,Z,U,V in w is
such that:
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1. X,V have the data on the eastern borders equal to that of the western borders
and, moreover, the northern interface of X and the southern interface of V
are nil; and

2. Y,U have the data on the southern borders equal to that of the northern
borders and the western interface of Y and the eastern interface of U are
nil.

Then, w and v are in the 1-step stuttering relation, hence they are stuttering equiv-
alent.

2.1.5 Refinement of register-voice interactive systems

The rv-IS model is a combination of state-based computing systems and interac-
tive dataflow-like computing systems. An appropriate rv-IS refinement definition
has to obey the following constraints:

(1) By restriction to systems with no interaction classes it should reduce itself
to the usual refinement of classical state-based systems (a presentation of
this type of refinement may be found in [3]);

(2) Similarly, by restriction to systems with no states it has to produce a refine-
ment for interactive dataflow networks (see [26] for a study of this type of
refinement).

For usual sequential computing systems there are several approaches to define
refinement relations. A simple approach is to use traces: in terms of traces, except
for some additional technical conditions, a concrete systems C is a refinement of
an abstract one A if the traces of C represent a subset of the traces of A, modulo
a relation connecting the state of C to those of A. A more efficient method is to
define the refinement relation using the syntactical representation of the systems.
This latter approach avoid the burden of computing the traces associated to a sys-
tem, while ensuring the validity of the inclusion relation between the associated
traces required by the previous definition.

In this subsection we present a notion of refinement of rv-IS systems in terms
of associated scenarios. Scenarios are an extension of traces, hence this approach
directly lifts the first refinement definition above to the level of rv-IS systems. It is
possible to define a refinement relation using the syntactical representation of un-
structured rv-IS systems, but this requires a detailed presentation of unstructured
rv-IS systems and of their algebraic representation and it is not included in this
section.

35



Refinement in state-based computing systems

Refinement of classical sequential specifications/programs has a long history, see
[1, 42, 26, 30, 23, 3, 38, 39, 16, 18], to mention just a few pointers to this active re-
search topics. We sketch here the key features of the approach following Abrial’s
book [3].

(a) Initial automaton A1 (b) 1st refined (b) 2nd refined
automaton A2 automaton A3

Figure 2.6: Automata for an “action-reaction” pattern

As a running example, we use nondeterministic finite automata and Event-B
models for an “action-reaction” system. Automata models of these systems are
presented in Fig. 2.6.

Refinement between such systems may be easily defined using traces. We say
a system C is a refinement of a system A if the following conditions holds:

(TI) trace inclusion

(SI) stuttering invariance

(RDF) relative deadlock freedom.

The explanation of the conditions’ meaning is below.
The basic constraint on refinement is (TI), stating that the traces of the refined

model C are a subset of the traces of the abstract model A. This property is the
corner stone of the refinement method producing a strategy to develop correct-by-
construction implementations. The approach starts with a general, abstract, and
often nondeterministic specification. Gradually, refined models with less degree
of nondeterminism are produced till the very end when hopefully a determinis-
tic model is obtained. Moreover, the final model is supposed to be close to the
execution system, getting a straightforward implementation.

This straightforward relation has to be extended to cope with data refinement.
To this end, trace equality is to be considered up to a stuttering relation (i.e., state
repetition in the traces); this is condition (SI). One simple example is when a
distinction makes sense between “internal” and “external” variables. The traces
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in the concrete model C may have many details which are presented in terms of
internal variables, while in A one can see only the external variables. During this
projection from C to A a sequence of states in a C trace may have no visible
changes in terms of external variables, hence stuttering states in the associated A
trace may occur.

Technically, one more condition is usually added: (RDF). Its role is to avoid
having deadlock in a state of C corresponding to a state of A with no deadlock,
at all. Without (RDF) the empty model will refine any model. While an exact
capture of this property requires the computation of the transitive-reflexive closure
of the abstract and concrete transition relations ae/re of the systems A/C, there
is a simpler, but slightly more restrictive condition “first step relative deadlock
freedom” (FSRDF). The mathematical formulation of (FSRDF) is shown as the
last condition in Fig. 2.7(b).

(a) Transition relations ae and re (b) Mathematical
definition

Figure 2.7: Refinement definition

The conditions (TI), (SI), and (RDF) are easily verified on examples A1/A2
and A2/A3 in Fig. 2.6, hence we have a chain of refinement in that figure.

Refinement in interaction-based systems

For the interaction part, we intend to follow Broy’s approach [26] to define refine-
ment in dataflow-based interactive systems.

The key features of Broy’s approach are:
1. The study is based on streams and an algebra DFN of dataflow networks

(see [28]).

2. Refinement is compatible with the algebra operations. This means, if the
arguments are refined systems, then the results of the DFN operations are
also refined systems.

3. The number of the channels may be different in the abstract and the refined
model. This is a technique to model “new” or “hidden” channels/events.
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4. Data-refinement is allowed to act at the level of stream values.

The full integration of these ideas into the rv-IS formalism requires the devel-
opment of an algebra for rv-IS systems and it is not in the scope of this paper. To
achieve the desiderate of capturing Broy’s method, the rv-IS algebra has to extend
the DFN algebra.

Refinement in state- and interaction-based systems

Why should one study rv-IS models and not only separate state-based and interaction-
based models? A few advantages may be:

− The rv-IS approach gives a better (structured, compositional) way to handle
shared events or shared variables in classical systems using a dataflow-like
interaction model;

− It increases the expressivity power of dataflow-like interaction systems by
including complex, structural, state-based control mechanisms.

It is not hard to development an “algebra” for representing such rv-IS systems,
similar to the network algebra approach presented in [53, 28]. We hope the notion
of refinement to be introduce below is compatible with this algebra, hence to get
compositional refinement in rv-IS systems.

From the refinement definition of classical computing systems, we will take
a closer look to the conditions (TI) and (SI) trying to lift them to the rv-IS sce-
nario level. The last condition (RDF) it is somehow problematic. In its strong
form, using transitive-reflexive closure, the condition may be usefulness: indeed,
while in the case of finite automata the reachability property if decidable, for fi-
nite interactive systems this property is not decidable [51]. However, (RDF) can
be introduced for systems where the behaviors on states and on classes are inde-
pendent: just write separately the condition for states and for classes. Anyways,
the stronger (FSRDF) condition can be easily stated.

Refinement definition. The definition of refinement of rv-IS models below is a
natural lifting of the trace-based definition of refinement of automata and of Event-
B models. Stuttering equivalence on traces is replaced by the scenario equivalence
introduced in the previous subsection.

Definition: Given two rv-IS systems AIS and CIS, we say CIS is a refinement
of AIS if the following conditions hold:

− The scenarios of CIS are a subset of the scenarios of AIS, under the follow-
ing assumptions:
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1. The scenario equality is up to the structural extension and stuttering
equivalence relations defined in the previous subsection.

2. The scenarios are projected on states and classes, hence the cells’ la-
bels does not matter.

3. For comparison one uses a gluing correspondence between the state
and the class variables of the CIS and the AIS systems.

− A scenario in CIS corresponding to as abstract scenario in AIS can be ex-
tended in CIS whenever the abstract one can be extended in AIS.

Often, the states and classes of the AIS system are also present in the CIS sys-
tem, hence the correspondence mentioned in the definition is a simple projection:
in that case, ignoring the new state and class variables used in the CIS scenarios
one gets scenarios written in the AIS variables.

Examples: Comparing Event-B and rv-IS refinements We presents a few
simple examples to get intuition on rv-IS refinement. They use the “action-reaction”
model introduced in this subsection earlier.

First rv-IS model for A/R-pattern: No interaction. We start with the Event-B
model M1 given by the following events (its possible traces are those generated
by the automata A1 from Fig. 2.6):

M1 :: init
a := 0
r := 0

a_on
when
a = 0

then
a := 1

end

a_off
when
a = 0

then
a := 0

end

r_on
when
r = 0

then
r := 1

end

r_off
when
r = 1

then
r := 0

end

An associated rv-IS model IS1 is specified as follows:

− the initial nodes are X,nil, s; the final ones are Z, nil, a0, r0;

− the transactions are:

s

X Ia Y

a0

s

Y Ir Z

r0

a0
nil aon nil

a1

a1
nil aoff nil

a0

r0
nil ron nil

r1

r1
nil roff nil

r0
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A graphical representation of IS1 is shown in Fig. 2.8, where the nil class is
represented by a dot ‘.’ (or ‘〈〉’).

This rv-IS model IS1 is with independent actions and it corresponds to A1.
Two scenarios are shown in Fig. 2.8(b). In the second scenario, the data around
the cells are omitted. In this model the a and r columns can slide as there are no
interactions between the associated actions. It is not hard to see that if one restricts
to ∗on and ∗off actions, then precisely the traces of automaton A1 are obtained.

Actually, these are action-traces resulting by the projection on the center cells
of the traces obtained form the scenarios in the way described in the previous
subsection via grids over extended alphabets and the flattening operator. As we
already said, from action-traces one can get state-and-class traces in a straightfor-
ward way. So, in this and the forthcoming examples of this subsections, traces
means action-traces and are used for automata, Event-B and rv-IS models.

s s
X I_a Y I_r Z

a_0 r_0
. . r_on .

a_0 r_1
. a_on . .

a_1 r_1
. . .

a_1 r_1
. a_off . .

a_0 r_1
. . r_off .

a_0 r_0

* *
* I_a * I_r *

* *
. . r_on .

* *
. a_on . .

* *
. . r_off .

* *
. a_off . r_on .

* *
. . r_off .

* *
(a) Graphical representation of IS1 (b) Two scenarios

Figure 2.8: First Action/Reaction rv-IS model (independent actors)

Relating IS and Event-B models: First case. If one ignore Connect-1 actions,
then the traces associated to the scenarios of the rv-IS model IS1 are the same as
the traces of the Event-B M1; moreover, ignoring the initialization actions Ia, Ir,
these traces are the traces recognized by automaton A1.

Second rv-IS model for A/R-pattern: One-way interaction. This second ex-
ample IS2 is a refinement of the former and it corresponds to the automaton in
Fig. 2.6(b). In this refined model “r sees a” (it corresponds to automaton A2).
A graphical representation of IS2 is shown in Fig. 2.9, together with a typical
scenario.

The Event-B model M2 is specified by the events
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M2 :: init
a := 0
r := 0

a_on
when
a = 0

then
a := 1

end

a_off
when
a = 0

then
a := 0

end

r_on
when
a = 1
r = 0

then
r := 1

end

r_off
when
a = 0
r = 1

then
r := 0

end

while the corresponding rv-IS model IS2 is specified as follows:

− X,nil, s are initial nodes; Z, nil, a0, r0 are final nodes;

− the transactions are:

s

X Ia Y

a0

s

Y Ir Z

r0

a0
nil aon nil

a1

a1
nil aoff nil

a0

a0
nil aon A1

a1

a1
nil aoff A0

a0

r0
A1 ron nil

r1

r1
A0 roff nil

r0

s s
X I_a Y I_r Z

a_0 r_0
. a_on A1 r_on .

a_1 r_1
. a_off . .

a_0 r_0
. a_on . .

a_0 r_0
. a_off A0 r_off .

a_0 r_0
...

...

(a) Graphical representation of IS2 (b) A scenario

Figure 2.9: Second Action/Reaction rv-IS model (one-way interacting actors)

Relating IS and Event-B models: Second case. If one ignore the initialization
actions Ia, Ir and the Connect-1 actions, then the traces of IS2 are the same as
the traces of M2 (and are those of automaton A2).

The “one-way” interaction constraint produces simple scenarios. Actually,
the scenarios in IS2 structural extend scenarios in IS1. Indeed, the only differ-
ence is that connections between a_on/a_off and r_on/r_off replace some
dummy connections from IS1 scenarios. This shows that, according to rv-IS re-
finement definition, IS2 is a refinement of IS1.
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s s
X I_a Y I_r Z

a_z r_z
. start_a . start_r R0

a_0 r_0 �
- R0 a_on A1 r_on R1

a_1 r_1 �
- R1 a_off A0 r_off R0

a_0 r_0 �
- ...

...

(a) Graphical representation of IS3 (b) A scenario

Figure 2.10: Third Action/Reaction rv-IS model (cyclic interacting actors)

Third rv-IS model for A/R-pattern: Cyclic interaction. This final refinement
corresponds to the third automaton A3 in Fig. 2.6(c). The event-B model is

M3 :: init
a := 0
r := 0

a_on
when
a = 0
r = 0

then
a := 1

end

a_off
when
a = 0
r = 1

then
a := 0

end

r_on
when
a = 1
r = 0

then
r := 1

end

r_off
when
a = 0
r = 1

then
r := 0

end

and the corresponding rv-IS model IS3 is defined by:

− the initial classes and states are X,nil, s; the final classes and states are
Z, nil, a0, r0;

− the transactions are:

s

X Ia Y

az

s

Y Ir Z

rz

az
nil starta nil

a0

rz
nil startr R0

r0

a0
R0 aon A1

a1

a1
R1 aoff A0

a0

r0
A1 ron R1

r1

r1
A0 roff R0

r0

In this final model both “r sees a” and “a sees r” (it corresponds to A3). Traces
include:
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IaIr . . . aonron . . . aoffroff . . . aonron . . . aoffroff ,

where ‘. . . ’ represents hidden sequences of Connect-1 actions of IS3 scenarios,
in particular those actions used for modeling the ï£¡back-arrowsï£¡.

A similar result holds: (1) If one abstracts from Connect-1 invisible actions,
the traces associated to IS3 scenarios are the same with those of M3 (and are the
traces of A3). (2) IS3 is a refinement of IS2.

2.1.6 From Event-B to structured rv-IS
In this subsection we will propose a general method to transform an Event-B sys-
tem specification into an rv-IS specification. The method actually produces an
rv-program, whenever the transformations used to define events’ actions can be
implemented with a code written in the rv-module code syntax. As already men-
tioned at the beginning of this section, we can also comment on the correctness
of the EB2IS translation. One possibility to do this is via the trace semantics. For
an Event-B model M , one can define the traces associated to all possible runnings
of the model. On the other hand, one can consider the translated rv-IS model M ′

and the associated running scenarios; starting with these scenarios and using the
flattening operator, a set of traces may be associated to the translated model M ′.
The correctness problem for the EB2IS translation must show that the translation
preserves the associated traces, up to state stuttering and a hiding of the auxil-
iary variables and modules introduced by the translation. Without giving a formal
proof that the translation is correct according to this definition, the examples in-
cluded in this subsection 2.1.6 provide evidence in this direction.

For this moment, we will deal only with the events of a certain system, not
with the invariants of that system.

Usually, a system in Event-B can be seen as a set of events which have the
following form:

Event-i
when
Gi

then
Ai

end

where for each i, Event-i is the name of the event, Gi is the guard and Ai
is the action. Notice that usually, Gi and Ai are sets of predicates, respectively,
actions. A system in Event-B has also a special event, namelly the Init event.

Constants, axioms, variables, and invariants may be used for proofs in a similar
way in Event-B and rv-IS models.
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The rv-IS specification associated to an Event-B model captures not only the
Event-B actions, but also the semantics rules used for its execution.

In order to construct a structured rv-IS specification for an Event-B model,
we will define a manager that will decide which event can take place at the each
time. For each event Event-i, we construct two modules Gi and Ei - modules
Gi are used by the manager in order to decide which event to be triggered, while
modules Ei are used by the manager to simulate the changes on the system caused
by the event. Since there is no possible confusion, we will denote with Ainit the
actions from the event Init in Event-B, with Gj the guard of the event Event-j
and with Aj the actions of the event Event-j in Event-B.

Since in Event-B, the memory is shared by all events, in the associated rv-
IS specification we have to simulate the common memory. Therefore, after each
action, the manager must update the variables of all processes.

Let us suppose that the system in Event-B has N events, excepting the Init
event. We define a set Ev = {Ei | i = 1, N} and a set V which contains all the
constants and all the variables in the system.

module I
{listen nil}{read C}{
Ainit;
tV = V ∪ C;

}{speak tV}{write nil}

module ID
{listen tV}{read nil}{
V = tV;

}{speak tV}{write V}

module Mg
{listen tV}{read nil}{
ten = ∅;

}{speak ten}{write nil}

module Gj
{listen ten}{read V}{
if(Gj){ten = ten ∪
{Ej};};

}{speak ten}{write V}

module Me
{listen ten}{read nil}{
tk :∈ ten;
tV = ∅;

}{speak tk, tV}{write
nil}

module Ej
{listen tk,tV}{read V}{
if(tk = Ej){Aj; tV = V;}

}{speak tk,tV}{write V}

module Mu
{listen tk,tV}{read nil}{
null;

}{speak tV}{write nil}

module U
{listen tV}{read V}{
V = tV;

}{speak tV}{write V}

Table 2.3: Modules for EB2IS translation

The general format of the corresponding rv-IS specification is the following:
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1: (I # for_s(j=1,N){ID})
2: $ (Mg # for_s(j=1,N){Gj})
3: $ while_st(ten 6= ∅) {
4: (Me # for_s(j=1,N){Ej})
5: $ (Mu # for_s(j=1,N){U}))
6: $ (Mg # for_s(j=1,N){Gj})
7: }

Module I contains all the initializations from the event Init in Event-B and
the module ID is used in order to provide the same variables to all the processes
involved in the program. The manager uses the modules Mg, Me and Mu to sim-
ulate the behavior in Event-B. The manager decides which event can take place.
In line 2, the manager construct a set ten of possible events that can take place
by checking the guards of each event; the module Gj contains the guard of event
Event-j. While we have at least one event that can take place, we start to simu-
late its behavior. In line 4, the manager chooses one event from the list of possible
events that can occur at the current moment and starts to search the ‘chosen one’.
Module Ej checks if the event Event-j is the ‘chosen one’ and if yes, it makes
the modifications in the system w.r.t. to actions in event Event-j by using the
set Aj. Finally, in line 5, the manager updates the variables in all processes w.r.t.
the new modifications. After this point, we repeat the process until we have no
more events that can occur.

We can imagine the behavior of the manager splited in the following actions:
search for the ‘chosen’ event (lines 2 and 6), modify the system w.r.t. the actions of
the ‘chosen’ event (line 4), update the variables of all processes (line 5). In order
to make the next action, the manager needs the information from the previous
action, therefore we must compose the lines of model diagonally.

Before presenting the general framework of the modules, let us denote by C
the set of all constants and by V the set of all variables of the system in Event-B.

The modules of the associated structured rv-IS specifications are described in
Table 2.3.

In this translation the manager decides in an nondeterministic fashion which
event can take place. However, in module Me the manager can implement any
method for deciding which event can be triggered. The manager described above
chooses at any moment one single event that can take place (tk :∈ ten; tk is a
single token). In a more general implementation, the manager is free to choose a
set of events that can take place at a certain moment of time by constructing tk to
be a set, but in this case we have to pay careful attention to avoid written conflicts
for updated variables occurring in more than one event.

A general scenario for the program above is presented in Figure 2.11.
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Figure 2.11: Scenarios for an rv-IS obtained from an Event-B model

2.1.7 An example - a simple file transfer protocol

In this subsection we present an example: we take a system modeled in Event-B
and translate it into an rv-IS specification. The model in Event-B can be found in
[3].

The model is that of a classical file transfer protocol. We want to transfer
a sequential file, i.e. a file composed of a finite number of items arranged in
a specific order, from one agent, the sender, to another one, the receiver. The
transferred file should be equal to the original one. The protocol is a distributed
program and it is realized by two distinct programs which exchange various kinds
of messages and work on different machines.

We are going to develop the protocol in more steps, taking into account the
following refinement strategy. In the initial model, we are interested only in the
final result of the protocol, not on how it is achieved. The file in this model is
transmitted in one shot. It is important to understand that in this initial model, the
agents are not supposed to reside on different sites.

In the first refinement, we start to transmit the file piece by piece between the
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two agents. The main difference with the initial model is that we separate the
sender and the receiver. However, they are not still completely independent, since
the receiver can "see" what remains to be transmitted by the sender and it can take
"directly" the next item from the sender’s file (it can access the sender’s memory).

In the next refinement step, the sender and the receiver are completely in-
dependent one from another, the receiver has no longer access to the sender’s
memory. In this stage, the two agents communicate only through messages: the
sender is sending messages that are read by the receiver and the receiver responds
to these messages by returning an acknowledgment message to the sender. The
distributed nature of the protocol is revealed by this refinement step.

Initial model

Event-B model: FTP, initial model In all the models of this file transfer proto-
col, we assume that we have a nonempty set D (the carrier set), two constants, n,
a positive number, and f , a total function from the interval {1, . . . , n} into the set
D.

Informally, f is the file to be transferred from the sender’s site to the receiver’s
site. The constant n represents the length of the file f , while D contains the data
that can be stored in the file f . Consequently, it is natural to represent the file f as
a total function with elements in D.

The result of the protocol is a variable g, the file transferred to the receiver.
Since we construct g step by step, we consider that g is a partial function from the
interval {1, . . . , n} into the set D.

In the initial model, we say nothing about the internal structure of the file f .
In order to transfer this file, we have an event receive which choose randomly
a partial function g with values in D, until this function is equal to f . When
we obtain such a function g, then we can assume that the file f was send to the
receiver’s site.

The axioms and the invariants are the same and are not explicitly shown in the
associated rv-IS models.

The Event-B events of this initial model are the followings:

FTP-EB1 ::= init
g :∈ N↔ D

receive
when
g 6= f

then
g :∈ N↔ D

end

final
when
g = f

then
skip

end

Translation of the Event-B model: FTP, initial model In order to construct an
rv-IS specification FTP-IS1, let us consider the following set of events Ev = {Erecv, Efin}.
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module I1
{listen nil}{read f,n}{
g :∈ N↔ D;
tV = {f,n,g};

}{speak tV}{write nil}

module ID
{listen tV}{read nil}{
V = tV;

}{speak tV}{write V}

module Mg
{listen tV}{read nil}{
ten = ∅;

}{speak ten}{write nil}

module Me
{listen ten}{read nil}{
tk :∈ ten; tV = ∅;

}{speak tk,tV}{write nil}

module Mu
{listen tk,tV}{read nil}{

}{speak tV}{write nil}

module U
{listen tV}{read V}{
V = tV;

}{speak tV}{write V}

module Grecv1
{listen ten}{read V}{
if(g 6= f){
ten = ten U {Erecv};};

}{speak ten}{write V}

module Gfin1
{listen ten}{read V}{
if(g = f){
ten=ten U {Efin};};

}{speak ten}{write V}

module Erecv1
{listen tk,tV}{read V}{
if(tk = Erecv){
g :∈ N↔D; tV = V;};

}{speak tk,tV}{write V}

module Efin1
{listen tk,tV}{read V}{
if(tk = Efin){tV = V;};

}{speak tk,tV}{write V}

Table 2.4: Modules for FTP-IS1 specification

The specification is:

FTP-IS1 ::= (I1 # ID # ID)
$ (Mg # Grecv1 # Gfin1)
$ while_st(ten 6= ∅) {

(Me # Erecv1 # Efin1)
$ (Mu # U # U)
$ (Mg # Grecv1 # Gfin1)

}

where the involved modules I, ID, Mg, Me, Mu, Grecv, Erecv, Gfin,
Efin, U are those described in Table 2.4.

Let us analyze a simple case: suppose that f contains only two characters, say
f=a.b; thus n=2. A typical scenario for the FTP-IS1 specification is built up
using the following partial scenarios. In the presentation, g=x.y.z, g=s.t,
. . ., g=a.b is just a sequence of random assignments for g. Alternatively, one
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can consider the case where the lucky assignment g=a.b never occurs.

The first piece of the scenario is an initialization step Init1(x.y.z). This
scenario starts with the given data f,n and by the random assignment g=x.y.z
generates the initial data for all processes associated to the events, i.e., for the
recv and fin processes. In addition, the scenario starts the checking of the
guards’ validity; in this case the guard of the recv event is true and recv is
exported on the last line.

Init1(x.y.z) =
f=a.b,n=2 . .

.
↓

→ I1 →
↓

tV={f,n,g}
f=a.b,n=2
g=x.y.z

↓
→ ID →

↓

tV={f,n,g}
f=a.b,n=2
g=x.y.z

↓
→ ID →

↓

tV={f,n,g}
f=a.b,n=2
g=x.y.z

. f=a.b,n=2
g=x.y.z

f=a.b,n=2
g=x.y.z

�

-

tV={f,n,g}
f=a.b,n=2
g=x.y.z

↓
→ Mg →

↓
ten=∅

↓
→ Grecv →

↓
ten={recv}

↓
→ Gfin →

↓
ten={recv}−→

. f=a.b,n=2
g=x.y.z

f=a.b,n=2
g=x.y.z

The next piece of the running scenario DoRecv1(x.y.z;s.t) corresponds
to the application of the recv event resulting in a state change with g=x.y.z
replaced by g=s.t. It is coordinated by the manager process which coordinates
in turn the Me (applying event actions), Mu (updating the cash copies of all data in
the processes with the new values) and Mg (checking the guards again) activities.
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DoRecv1(x.y.z;s.t) =
. f=a.b,n=2

g=x.y.z
f=a.b,n=2
g=x.y.z

−→ ten={recv}
↓

→ Me →
↓

tk=recv
tV=∅

↓
→ Erecv →

↓

tk=recv
tV={f,n,g}
f=a.b,n=2

g=s.t

↓
→ Efin →

↓

tk=recv
tV={f,n,g}
f=a.b,n=2

g=s.t
. f=a.b,n=2

g=s.t
f=a.b,n=2
g=x.y.z

�

-

tk=recv
tV={f,n,g}
f=a.b,n=2

g=s.t

↓
→ Mu →

↓

tV={f,n,g}
f=a.b,n=2

g=s.t

↓
→ U →

↓

tV={f,n,g}
f=a.b,n=2

g=s.t

↓
→ U →

↓

tV={f,n,g}
f=a.b,n=2

g=s.t

. f=a.b,n=2
g=s.t

f=a.b,n=2
g=s.t

�

-

tV={f,n,g}
f=a.b,n=2

g=s.t

↓
→ Mg →

↓
ten=∅

↓
→ Grecv →

↓
ten={recv}

↓
→ Gfin →

↓
ten={recv}−→

. f=a.b,n=2
g=s.t

f=a.b,n=2
g=s.t

Hopefully, after a number of such steps the random assignment gets g=a.b
and in that case the exported true guard in the last line is fin, not recv.

If the fin guard is true, then the following last piece of scenarios applies. In
this part, the fin event has no actions, so nothing changes in the states. Therefore
this piece of the scenario is repeated forever.

DoFin1 =
. f=a.b,n=2

g=a.b
f=a.b,n=2

g=a.b

−→ ten={fin}
↓

→ Me →
↓

tk=fin
tV=∅

↓
→ Erecv →

↓

tk=fin
tV=∅

↓
→ Efin →

↓

tk=fin
tV={f,n,g}
f=a.b,n=2

g=a.b
. f=a.b,n=2

g=a.b
f=a.b,n=2

g=a.b
�

-

tk=fin
tV={f,n,g}
f=a.b,n=2

g=a.b

↓
→ Mu →

↓

tV={f,n,g}
f=a.b,n=2

g=a.b

↓
→ U →

↓

tV={f,n,g}
f=a.b,n=2

g=a.b

↓
→ U →

↓

tV={f,n,g}
f=a.b,n=2

g=a.b

. f=a.b,n=2
g=a.b

f=a.b,n=2
g=a.b

�

-

tV={f,n,g}
f=a.b,n=2

g=a.b

↓
→ Mg →

↓
ten=∅

↓
→ Grecv →

↓
ten=∅

↓
→ Efin →

↓
ten={fin} −→

. f=a.b,n=2
g=a.b

f=a.b,n=2
g=a.b
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Protocol first refinement

Refined Event-B model: FTP, 1st refinement In the first refinement, we mod-
ify the event receive in order to send to the receiver concrete parts of file f .
Event receive will no longer produce randomly files until it obtains one equal
with f . Instead, it will send one element of the file f at each step. For this we
need to introduce a new variable r which represents an index of the file f . At each
step, the r-th element of f is copied in the file g of the receiver’s site. The file
transfer is finished when r is greater than n.

The first refinement of our model in Event-B has the following events:

FTP-EB2 ::= init
g := ∅
r := 1

receive
when
r ≤ n

then
g := g ∪ {r 7→ f(r)}
r := r + 1

end

final
when
r = n+ 1

then
skip

end

Translation of the Event-B model: FTP, 1st refinement The corresponding
rv-IS specification FTP-IS2 use the same formula as in the case of the initial
model, but with modules I1, Grecv1, Gfin1, Erecv1 slightly changed,
i.e., they are replaced by the new modules I2, Grecv2, Gfin2, Erecv2
listed in Table 2.5.

module I2
{listen nil}{read f,n}{
g = ∅;
r = 1;
tV = {f,n,g,r};

}{speak tV}{write nil}

module Erecv2
{listen tk,tV}{read V}{
if(tk = Erecv){
g = g U {r 7→ f(r)};
r = r+1; tV = V;};

}{speak tk,tV}{write V}

module Grecv2
{listen ten}{read V}{
if(r ≤ n){
ten = ten U {Erecv};};

}{speak ten}{write V}

module Gfin2
{listen ten}{read V}{
if(r = n+1){
ten = ten U {Efin};};

}{speak ten}{write V}

Table 2.5: Specific modules for FTP-IS2 specification

Let us analyze the above case again: suppose that f=a.b,n=2. The run-
ning scenario is unique (deterministic) this time and consists of an initial action,
followed by n times repeated recv actions, followed by repeated fin actions.

The first piece of the scenario is the initialization step Init2. It starts with
the given data f,n and generates the initial data for all processes using the empty
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file for g, denoted g=.; moreover, r=1. Is also checks the guards and the true
guard recv is exported on the last line.

Init2 = f=a.b
n=2

. .

.
↓

→ I2 →
↓

tV={f,n,g,r}
f=a.b,n=2
g=.,r=1

↓
→ ID →

↓

tV={f,n,g,r}
f=a.b,n=2
g=.,r=1

↓
→ ID →

↓

tV={f,n,g,r}
f=a.b,n=2
g=.,r=1

. f=a.b,n=2
g=.,r=1

f=a.b,n=2
g=.,r=1

�

-

tV={f,n,g,r}
f=a.b,n=2
g=.,r=1

↓
→ Mg →

↓
ten=∅

↓
→Grecv2→

↓
ten={recv}

↓
→ Gfin2 →

↓
ten={recv} −→

. f=a.b,n=2
g=.,r=1

f=a.b,n=2
g=.,r=1

The next part of the scenario corresponds to the modeling of the recv actions.
The modeling of the assignment g=a, corresponding to the increment of g=. with
the item f(1)=a is described below.

DoRecv2(.;a) =
. f=a.b,n=2

g=.,r=1
f=a.b,n=2
g=.,r=1

−→ ten={recv}
↓

→ Me →
↓

tk=recv
tV=∅

↓
→ Erecv →

↓

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

↓
→ Efin →

↓

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

. f=a.b,n=2
g=a,r=2

f=a.b,n=2
g=.,r=1

�

-

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

↓
→ Mu →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

. f=a.b,n=2
g=a,r=2

f=a.b,n=2
g=a,r=2

�

-

tV={f,n,g,r}
f=a.b,n=2
g=a,r=2

↓
→ Mg →

↓
ten=∅

↓
→ Grecv→

↓
ten={recv}

↓
→ Gfin →

↓
ten={recv} −→

. f=a.b,n=2
g=a,r=2

f=a.b,n=2
g=a,r=2

Next is the modeling of the assignment g=a.b, corresponding to the incre-
ment of g=a with the item f(2)=b.
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DoRecv2(a;a.b) =
. f=a.b,n=2

g=a,r=2
f=a.b,n=2
g=a,r=2

−→ ten={recv}
↓

→ Me →
↓

tk=recv
tV=∅

↓
→ Erecv →

↓

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ Efin →

↓

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a,r=2

�

-

tk=recv
tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ Mu →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a.b,r=3

�

-

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ Mg →

↓
ten=∅

↓
→ Grecv→

↓
ten=∅

↓
→ Gfin →

↓
ten={fin} −→

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a.b,r=3

After these two macro-steps, the fin guard is true. Therefore, the last piece
of the scenario corresponding to fin is applied and repeated forever.

DoFin2 =
. f=a.b,n=2

g=a.b,r=3
f=a.b,n=2
g=a.b,r=3

−→ ten={fin}
↓

→ Me →
↓

tk=fin
tV=∅

↓
→ Erecv →

↓

tk=fin
tV=∅

↓
→ Efin →

↓

tk=fin
tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a.b,r=3

�

-

tk=fin
tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ Mu →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ U →

↓

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a.b,r=3

�

-

tV={f,n,g,r}
f=a.b,n=2
g=a.b,r=3

↓
→ Mg →

↓
ten=∅

↓
→ Grecv→

↓
ten=∅

↓
→ Efin →

↓
ten={fin} −→

. f=a.b,n=2
g=a.b,r=3

f=a.b,n=2
g=a.b,r=3

Refinement preservation The state space of FTP-IS2 is S2 = {f, n, g, r},
while that of FTP-IS1 is S1 = {f, n, g}. The class space of FTP-IS2 is C2 =
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{ten, tk, tV = (f, n, g, r)}, departing from that of FTP-IS1C1 = {ten, tk, tV = (f, n, g)}
by the type of tV.

Fact 2.1.1 FTP-IS2 is a refinement of FTP-IS1.

Proof: (Sketch) Let ρ = (ρs, ρc) be a relation between the states and classes of
FTP-IS2 and FTP-IS1, where ρs : S2 → S1 and ρc : C2 → C1 are the natural
projections which makes abstraction of r. If Scen is a scenario in FTP-IS2, then
ρ(Scen) is a scenario in FTP-IS1.

Moreover, the weak relative deadlock freedom is valid: if Scen1 is a partial
scenario in FTP-IS2 and the scenario ρ(Scen1) can be extended in FTP-IS1, then
the same is true for Scen1 in FTP-IS2. 2

Protocol second refinement

Refined Event-B model: FTP, 2nd refinement Since our goal is a distributed
execution of this file transfer protocol, the first refinement does not satisfy our
needs. In the first refinement, the receiver has access to the file f which is sup-
posed to be on the sender’s site.

In the second refinement, we will avoid this disadvantage. We introduce a new
event send that we can think, informally, to be triggered by the sender. Event
send will appear before each occurrence of the event receive. In event send,
the sender will send an item from file f which will be received in event receive
by the receiver.

In order to assume a correct file transfer, we introduce a new variable s, a local
counter on the sender’s site, which represents the index of the next item to be sent
to the receiver.

When it is safe to transfer a data from the sender to the receiver, the data item
d (also a new variable), which is equal to f(s), and the counter s incremented
are send to the receiver by event send. Notice that the sender waits for an ac-
knowledgement from the receiver in order to assure that the transfer is safe. This
acknowledgement is counter r.

Event receive checks if the received counter s is different from its counter
r and, if so, it accepts the item d, that will be stored in its file g, and increments
the counter r.

The Event-B events that encode the informal behavior of the protocol as de-
scribed above are:
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FTP-EB3 ::= init
g = ∅
s = 1
r = 1
d :∈ D

send
when
s = r
r 6= n+ 1

then
d = f(s)
s = s+ 1

end

receive
when
s = r + 1

then
g = g ∪ {r 7→ d}
r = r + 1

end

final
when
r = n+ 1

then
skip

end

module I3
{listen nil}{read f,n}{
g = ∅; r = 1; s = 1;
d :∈ D; tV = {f,n,g,r,d};

}{speak tV}{write nil}

module Grecv3
{listen ten}{read V}{
if(s = r+1){
ten = ten U {Erecv};};

}{speak ten}{write V}

module Gsend3
{listen ten}{read V}{
if(s = r & r 6= n+1){
ten = ten U {Esend};};

}{speak ten}{write V}

module Erecv3
{listen tk,tV}{read V}{
if(tk = Erecv){
g = g ∪ {r 7→ d}; r = r+1;
tV = V;};

}{speak tk,tV}{write V}

module Esend3
{listen tk,tV}{read V}{
if(tk = Esend){
d = f(s); s = s+1;
tV = V;};

}{speak tk,tV}{write V}

Table 2.6: Specific modules for FTP-IS3 specification

Translation of the Event-B model: FTP, 2nd refinement For presenting the
associated rv-IS specification FTP-IS3, first we fix the following set of events
Ev = {recv, send, fin}. The specification is given by the following expression:

FTP-IS3 ::= (I3 # ID # ID # ID)
$ (Mg # Grecv3 # Gsend3 # Gfin2)
$ while_st(ten 6= ∅) {

(Me # Erecv3 # Esend3 # Efin)
$ (Mu # U # U # U)
$ (Mg # Grecv3 # Gsend3 # Gfin2)

}

As in the case of the first refinement, we list in Table 2.6 only the new modules.
The scenarios can be constructed in a similar way as in previous subsubsec-

tions. One particular example, for the particular file f=a.b we have used so far,
is described below.
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The scenario pieces Init3, DoSend3(a) and DoRecv3(a) we will be
talking about in the next comments are presented in full details in the next three
pages.

The scenario starts with the initialization step Init3. The input state has
the given data f,n. The scenario describes the setting of the initial data for all
processes using the empty file for g and a random datum d=?? for the send
channel. Therefore, at the beginning all processes have the state f=a.b, n=2,
g=., r=1, d=??, s=1. The manager also checks the guards and the single
true guard send is exported on the last line.

The next part of the scenario corresponds to the modeling of an alternate ap-
plication of send and recv actions. It begins with DoSend3(a) describing the
modeling of the send assignment corresponding to the load of f(s) (equal to a)
in d and the increment of s. The next part of the scenario, denoted DoRecv3(a),
corresponds to the modeling of the recv actions. This part contains the modeling
of the assignment g=a, corresponding to the increment of g=. with the value of
d.
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There are two more macro steps modeling of the assignment g=a.b, corre-
sponding to the load of the value f(s)=b in d and the increment of g=a with the
new value of d, namely b.

After these two steps, the fin guard is true. Therefore, the last piece of
scenario corresponding to fin is applied and repeated forever.

The partial scenarios for sending/receiving ‘b’ DoSend3(b), DoRecv3(b) and
for DoFin2 can be computed in a similar way.

Refinement preservation The state space of FTP-IS3 is S3 = {f, n, g, r, s, d},
while that of FTP-IS2 is S1 = {f, n, g, r}. The class space of FTP-IS2 is C3 =
{ten, tk, tV = (f, n, g, r, s, d)} and that of FTP-IS1 isC2 = {ten, tk, tV = (f, n, g, r)}.
FTP-IS3 has a new event send and the sets used for ten, tk are larger, including
this new element.

Fact 2.1.2 FTP-IS3 is a refinement of FTP-IS2.

Proof: (Sketch) The Let ρ = (ρs, ρc) be a relation between the FTP-IS3 and
FTP-IS2, where ρs : S2 → S1 and ρc : C2 → C1 are the natural projections
which makes abstraction of s, d, send. If Scen is a scenario in FTP-IS3, then
ρ(Scen) is a scenario in FTP-IS2 up to sub-scenario stuttering corresponding to
the application of the macro-steps associated to the send event and of the column
corresponding to the send event. Indeed, this latter sub-scenarios have no visible
effect on the states and classes of FTP-IS2 from their border.

Moreover, the weak relative deadlock freedom is valid: if Scen1 is a partial
scenario in FTP-IS2 and the scenario ρ(Scen1) can be extended in FTP-IS2, then
the same is true for Scen1 in FTP-IS3. 2

2.1.8 Final comments
The main contributions of this section are:

1. the introduction of a scenario-based definition of refinement of register-
voice interactive systems (rv-IS models); and

2. the definition of a translation EB2IS from Event-B models to structured rv-
IS models.

In addition,

3. we have provided enough evidence that the translation preserves refinement
by considering a chain of complex enough refined Event-B models and the
translated chain of rv-IS models.
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From our future research plans, directly related to the research presented in
this section, we emphasize the following:

1. provide a general mathematical proof that the translation EB2IS preserves
refinement;

2. give a more concise definition of rv-IS refinement based on the rv-IS models
themselves, not on the associated scenarios;

3. find another mathematical proof that the EB2IS translation preserves refine-
ment, now using the refinement definition based on models, not on traces
and scenarios.
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2.2 Work on a real-time extension for Event-B
This work on real-time heavily relies on the proposed integration of Event-B and
rv-IS formalisms. We investigated the two following research topics:

− The introduction and development of temporal pointers in rv-IS. A tem-
poral pointer specifies a time address on a stream. Their introduction and
use is based on usual pointers and the space-time duality transformations.
In particular, rv-IS interaction composition operators are used to deal with
real-time constraints.

− The second objective is to develop rv-IS inspired real-time Event-B models.
In order to see the adequacy of the enrichment of Event-B with this time
formalism we have suited real-time aspects of a NoC (Network-on-Chip)
Event-B modelling.

2.2.1 Introduction
Modelling time-dependent computing in Event-B - a state-based formal method
based on refinement - is currently of industrial interest with immediate applica-
tions in industrial processing. Furthermore, time-awareness is displayed by a large
plethora of contemporary systems such as GPS applications, sensor networks,
network-on-chip (NoC) computing, etc. We explore time modelling in Event-B
via the related structured interactive systems formalism, where both spatial and
temporal reasoning are already available in the context of a flexible structuring of
component interactions. In this paper we introduce pointers in structured interac-
tive systems, in particular temporal pointers that allow for finer-grained synchro-
nization between parallel processing. We discuss the impact of temporal point-
ers on Event-B modelling and illustrate our findings on a small case study for
congestion-awareness in NoCs.

Timing aspects are important in industrial processing, for instance to express
deadlines throughout the development process. Moreover, time-awareness is dis-
played by a large plethora of contemporary systems such as GPS applications,
sensor networks, network-on-chip (NoC) computing, etc. If we are able to ex-
press timing aspects and time-awareness via precise modeling, such as provided
by formal methods, then we are able to analyze our timed systems and conse-
quently understand their strengths and weaknesses.

Formal methods, with their mathematic proving core, are an important instru-
ment in modeling and analyzing software-intensive systems. Traditionally charac-
terized as hard to use, due to the requested mathematical background and the lack
of automatic tools, nowadays formal methods have matured, to the point where
they are considered in industry when developing software-intensive systems [64].
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Examples of the industrial undertaking of formal methods are increasing. The
famous line 14 of the driverless Parisian metro [32], developed in 1998 using the
B-method [1], is the first notable example of a formal method-based development,
reviewed in [19]. The method used by Siemens for developing the software con-
trolling the line 14 train ensured its correctness in a mathematical manner that
effectively eliminated the unit testing from the software lifecycle. No human re-
sources are now needed to operate the trains and in addition, the trains are faster,
hence fewer are needed in total.

More recent examples of the Event-B [3] formal method usage in industry can
be seen for instance with Space Systems [130] and SAP [11]. In Event-B, the
development of a model is carried out step by step from an abstract specification
to more concrete implementations. Using the refinement approach, a system can
be described at different levels of abstraction, and the consistency in and between
levels can be proved mathematically. Event-B has an associated tool, the Rodin
Platform [59, 4] where proof obligations are generated automatically and proven
either automatically or interactively. Thus, one gets a mathematical proof that
the model is correct; this kind of integrated tool support is a major advantage
of Event-B. Even though the envisioned industrial tool support assumes that the
(difficult) mathematical modeling is hidden in the background, Rodin is certainly
a big step forward in promoting formal methods to industry.

There are already several approaches to model time and time properties in
Event-B. Patterns that permit the analysis of timing properties relating to the re-
silience and consistency of (SAP) business processes are presented in [10], based
on an existing Event-B pattern for modelling time [12]. In [20], a formalism for
the modelling and analysis of dynamic reconfiguration of dependable real-time
systems is proposed. The timing properties of deadline, delay, and expiry are
investigated in [46], by proposing several refinement patterns on using Event-B
constructs for these properties consistently throughout the development. In [15],
a process-based view from an Event-B model is extracted and augmented with
timing constraints to form a timed automata model, to be an input for the Uppaal
tool [8]. Another more recent approach that compares the execution in Event-B
and Uppaal, in order to propose a notion of refinement for timed systems in Up-
paal, is presented in [9]. Moreover, embedding time in Event-B based on an earlier
modeling of discrete control over continuous evolution in the action systems [7]
formalism is introduced in [5].

While the latter approach above takes advantage of the semantical compati-
bility between Event-B and the Action Systems formalism [6, 63], in this paper
we approach time modeling in Event-B via another related formalism, namely the
register-voice interactive systems (rv-IS) [56, 45, 33, 34]. This is a recent pro-
posal for developing software systems using both structural state-based as well
as interaction-based composition operators. Both spatial and temporal reasoning
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are already available in the context of a flexible structuring of component interac-
tions. The contribution of this paper consists in introducing pointers in rv-IS, in
particular temporal pointers that allow for finer-grained synchronization between
parallel processing. We explore the relevance of temporal pointers on Event-B
modelling, considering a recently proposed translation between Event-B and rv-
IS [13]. Moreover, we base this discussion on a small case study for congestion-
awareness in NoCs, inspired by earlier NoC modeling in Event-B [17].

We proceed as follows. In Subsection 2.2.2 we present the fundamental fea-
tures of rv-IS, to be able to introduce spatial and temporal pointers in Subsection
2.2.3. In Subsection 2.2.4 we model an approach to congestion-aware NoC com-
puting with temporal pointers in rv-IS and in Subsection 2.2.5 we discuss the
impact of this kind of time-awareness on Event-B. We conclude in Subsection
2.2.6.

2.2.2 Structured interactive systems
In this subsection we describe the structured interactive systems to the extent
needed in this paper.

The rv-IS formalism is built on top of register machines, closing them with
respect to a space-time duality transformation. Specifically, we use the model,
the core programming language, the specification formalism and the analysis
techniques developed for modeling, programming and reasoning about interac-
tive computing systems by the last author and coworkers in the recent years, see
[56, 45, 33, 34]. In the following, we shortly overview the approach.

x=6 . .
. IL tx=6 IA tx=6 IR .

x=1 y=6 z=6
. P tx=1 D tx=1 M .

x=2 y=6 z=5
. P tx=2 D tx=2 M .

x=3 y=6 z=3
. P tx=3 D tx=3 M .

x=4 y=6 z=0
. TL tx=-1 TA tx=-1 TR .

. . z=0

S1 =

a
s X t

b �
- Y u

c

(a) Scenario for Perfect1 (b) “Back-arrows” Scenario

Figure 2.12: Scenarios

Scenarios. A scenario is a two-dimensional rectangular area filled in with iden-
tifiers and enriched with data around each identifier. In our interpretation, the

64



columns correspond to processes, the top-to-bottom order describing their pro-
gress in time. The left-to-right order corresponds to process interaction in a non-
blocking message passing discipline. This means that a process sends a message
to the right, then it resumes its execution. (Memory) states are placed at the north
and at the south borders of the identifiers and (interaction) classes are placed at
the west and at the east borders of the identifiers. In Fig. 2.12 (a) we illustrate a
scenario for deciding whether the number 6 is a perfect number (i.e., it is equal to
the sum of its proper divisors). The modules in this figure are described shortly.

Spatio-temporal specifications. A spatio-temporal specification combines con-
straints on both spatial and temporal data. For the spatial data, we use the common
data structures and their natural representations in memory. For representing tem-
poral data we use streams: a stream is a sequence of data ordered in time and is
denoted as a0_a1_. . . , where a0, a1, . . . are the data lying on the stream at time
0, 1, . . . , respectively.

A voice is defined as the time-dual of a register. Voices are simple temporal
structures, represented on streams, that hold natural numbers. The value of a
voice can be modified in a location and then propagated within the system. A
voice can be “listened to” at various locations, at each location the piece of stream
representing the voice displaying a particular value. Voices may be implemented
on top of a stream in a similar way registers are implemented on top of a Turing
tape, for instance specifying their starting address and their length. Most of usual
data structures have natural temporal representations. Examples includes timed
booleans, timed integers (denoted tInt), timed arrays, timed lists, etc.

The notation ⊗ is used for the product of memory states, while _ for the
product of interaction classes; N⊗k denotes N⊗. . .⊗N (k terms) and N_k denotes
N_. . . _N (k terms); the associated “star” operations are denoted as (__⊗)∗ and
(___)∗.

A simple spatio-temporal specification S : (m, p) → (n, q) is a relation S ⊆
(N_m × N⊗p) × (N_n × N⊗q), where m (resp. p) is the number of input voices
(resp. registers) and n (resp. q) is the number of output voices (resp. registers).
More general spatio-temporal specifications may be introduced using complex
interface types, not only registers and voices.

Syntax of structured rv-programs. The type of a structured rv-program P ,
denoted by

P : (w(P ), n(P ))→ (e(P ), s(P )),
collects the types at the west, north, east and south borders of its scenarios. In
general, these are relatively complex types built up from boolean and integer types
- see the concrete types used in Agapia v0.1 [33].

We define the syntax of structured rv-programs below:
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P ::= X | P # P | P % P | P $ P
| if(C) then {P} else {P} | while_t(C) {P}
| while_s(C) {P} | while_st(C) {P}

The starting blocks for the construction of structured rv-programs are called
modules. The syntax of a module is:

module module_name
{listen temporal_vars}{read
spatial_vars}{
code

}{speak temporal_vars’}{write
spatial_vars’}

The operations on structured rv-programs are briefly described below. More
details and examples may be found in [56, 33, 34].

1. Composition: Due to their two dimensional structure, programs may be com-
posed horizontally and vertically, as long as their types agree. They can also be
composed diagonally by mixing the horizontal and vertical composition.

− For two programs Pi : (wi, ni) → (ei, si), i = 1, 2, the horizontal compo-
sition P1#P2 is well defined only if e1 = w2; the type of the composite is
(w1, n1 ⊗ n2)→ (e2, s1 ⊗ s2).

− Similarly, the vertical composition P1%P2 is defined only if s1 = n2; the
type of the composite is (w1

_w2, n1)→ (e1
_e2, s2).

− The diagonal composition P1$P2 is a derived operation - it connects the east
border of P1 to the west border of P2 and the south border of P1 to the north
border of P2; it is defined only if e1 = w2 and s1 = n2; the type of the
composite is (w1, n1)→ (e2, s2).

2. If: For the “if” operation, given two programs with the same type P, Q :
(w, n) → (e, s), a new program if(C) then {P} else {Q} : (w, n) → (e, s)
is constructed, for a condition C involving both, the temporal variables in w and
the spatial variables in n.

3. While: There are three while statements, each being the iteration of the corre-
sponding composition operation.

− For a program P : (w, n)→ (e, s), the statement while_t(C){P} is defined
if n = s and C is a condition on the variables in w ∪ n. The type of the
result is ((w_)∗, n)→ ((e_)∗, n).

− The case of spatial while while_s(C){P} is similar.
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module M
{listen a}{read
n}{
code

}{speak a}{write
s}

module I
{listen a}{read
nil}{
ti:tInt; ti=1;

}{speak
ti,a}{write nil}

module M1
{listen
ti,a}{read n}{
code; ti++;

}{speak
ti,a}{write s}

module E
{listen ti,a}{read
nil}{
null;

}{speak a}{write
nil}

Table 2.7: Modules used for defining the “for” statement

− If P : (w, n) → (e, s), the statement while_st(C){P} is defined if w = e
and n = s and C is a condition on w∪n. The type of the result is (w, n)→
(e, s).

Derived statements. Many usual programming idioms may be naturally ex-
tended in this setting. For instance,

for_s(tInt ti=1;ti<k;ti++){M}

denotes
I # while_s(ti<k){M1} # E

where I sets ti=1, M1 adds to M the ti++ statement, and E discards ti. The
modules are illustrated in Table 2.7.

Operational semantics of structured rv-programs. The operational semantics
is given in terms of scenarios. Scenarios are built up with the following procedure:

1. Each cell of the associated grid has as label a module name.

2. An area around a cell may have additional information. For example, if a
cell has the information x = 2, that means that in that area x is updated to
be 2.

3. The scenario is built from the current rv-program by reducing it to sim-
ple compositions of spatio-temporal specifications w.r.t. the syntax of the
program, until we reach basic blocks, e.g. modules.

Example. We illustrate the operational semantics with the following structured
rv-program Perfect1 verifying if a number n is perfect:
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module IL{listen nil}{read n}{
tInt tn = n; Int x =

1;}{speak tn}{write x}

module IA{listen tn}{read nil}{
Int y = tn;}{speak tn}{write y}

module IR{listen tn}{read nil}{
Int z = tn;}{speak nil}{write z}

module P{listen nil}{read x}{
tInt tx = x; x =

x+1;}{speak tx}{write x}

module D{listen tx}{read y}{
if(y % tx !=0){tx =

0;};}{speak tx}{write y}

module M{listen tx}{read z}{
z = z - tx;}{speak nil}{write z}

module TL{listen nil}{read x}{
tx = -1;}{speak tx}{write nil}

module TA{listen tx}{read y}{
null;}{speak tx}{write nil}

module TR{listen tx}{read z}{
null;}{speak nil}{write z}

Table 2.8: The modules of the Perfect1 program

(IL # IA # IR)
% while_t(x =< n/2){P # D # M}
% (TL # TA # TR)

The modules are listed in Table 2.8.
In our rv-program we can imagine that we have three processes: one generates

all the numbers in the set {n/2, . . . , 1} (module P), one checks if a number is a
divisor of n (module D) and the last one updates a variable z (module M). Modules
IL, IA and IR are used for initializations and TL, TA and TR for termination. At
the end of the program, if the variable z is 0, then the number n is perfect.

In order to show how we can construct a scenario for the rv-program above let
us consider a concrete example for n = 6. The scenario for n = 6 is presented in
Fig. 2.12 (a).

In the first line of the scenario we initialize the processes with the needed
information: module IL is reading the value n = 6 and provides the first process
with x = 1 and declare a temporal variant of n, namely tn = 6, that will be used
by modules IA and IR for the other initializations; modules IA and IR use the
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temporal variable tn for initializing the other two processes with the initial value
of n, namely y = 6, z = 6, respectively.

In the next step, module P produces a temporal data tx = 1 (tx is equal with
the data x of the first process) and increases x. Module D verifies if tx is a divisor
of y and, if it is not, then it resets the value of tx to 0. Finally, module M decreases
the value of z by tx. Notice that module M decreases the value of z only with
the divisors of the initial variable n. We continue this steps until the variable x
becomes greater than n

2
.

A final line contains terminating modules that rearrange some interfaces, keep-
ing only the relevant result z.

2.2.3 Pointers in structured interactive systems
In this subsection we shortly introduce pointers in structured interactive systems.
For brevity, the syntax and the semantics used for spatial and temporal pointer
variables is not completely defined here. More details are given in our technical
report [14].

Spatial and temporal pointers. The variables used for rv-IS spatial data types
are extended to allow the use of pointers. These usual pointers are renamed here
as spatial pointers. A spatial pointer variable specifies a physical address in the
memory space. A (spatial) pointer is denoted by ∗x; the value in the memory cor-
responding to the address specified by the pointer is accessed by the construct &x.
We use without formal introduction pointers and the basic pointer manipulation
rules as they are used in common practice, for instance by C programmers.

Temporal pointers are similar constructs, but used for accessing temporal data.
A temporal pointer represents a physical address on the interaction stream (a phys-
ical time) and is denoted by ∧x. To access the data value on the stream at the time
address specified by the temporal pointer x we use the same notation &x as in the
case of spatial pointers.

The enrichment of data types with pointers requires an explanation on the as-
sociated program semantics. In particular, it leads to a few restrictions on program
operations, explained below.

Pointers in modules. The module construct may use both normal and pointer
variables for their input and output interfaces. If a spatial pointer variable ∗s
is present both in the input (read) and in the output (write) interfaces, then the
corresponding pointer s refers to the same memory address before, during and
after the execution of the module. Pointers that appear only in one, either output
or input interface may be used to model allocation/deallocation of memory space.

69



Similarly, if a temporal pointer ∧x is present in both the input (listen) and the
output (speak) interfaces, then it refers to the same temporal address on the inter-
action stream before, during and after the execution of the module. In particular,
the code in the module should be executed so that the computation and the spoken
temporal output value &x at the output interface be finished in the same time cycle
with the listening of the input data &x in the input interface. In other words, an
occurrence of a pointer variable in both the input and the output interfaces of a
module requires a synchronisation of the input listening and the output speaking
events. Moreover, if there is a causal dependence between the output and the in-
put values, then the computation for getting the output value has to be fast enough
to produce the result in the same time cycle. Finally, temporal pointers that oc-
cur in one interface only can be used to handle starting or ending of scheduling
synchronization constraints for stream processing.

In the presence of pointers, incorrect programs may easily occur. For instance,
the code “tInt ∧x; &x=&x+&(x+1);” can not be implemented: one has to
output at the current time x a result that uses data that will be received later in time
- at time x + 1 (a possible implementation may be based on a risky speculative
computation: guess the output and verify later if it was a correct guess; if not,
discard this computation scenario).

Before describing the use rules for pointer variables in structured interactive
programming constructs, we emphasize a limitation in using pointer variables
here: pointer variables are allowed to be used locally for simple interface type
(the types used for modules), but not for general interface type - see Agapia v0.1
syntax [33] for a formal distinction between such types. For spatial pointers, this
means we can not use pointers that refers to a memory space obtained by glu-
ing together the memory space of two or more processes. Similarly, temporal
pointers are not allowed to refer to a streaming interval that covers more than one
transaction.

Pointers in structured interactive programming statements. Now, we con-
sider the programming constructs. By the above observation, all programming
constructs used for structured interactive programs, except for the diagonal (i.e.,
$) and the iterated diagonal (i.e., while_st) composition statements, are al-
lowed to use also pointer variables at their interfaces. This actually means the
following:

− The if statement can use pointer variables at all interfaces.

− The spatial program composition constructs # and while_s can use tem-
poral pointer variables for the connecting (temporal) interfaces.

− The temporal program composition constructs % and while_t can use
spatial pointer variables for the connecting (spatial) interfaces.
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− The diagonal program composition constructs $ and while_st can use
either spatial or temporal pointer variables for the connecting interfaces,
but not both types of pointers. Moreover, if spatial pointers are used, then
the semantics of the diagonal composition operators has to be given with left
“back-arrows”, as in Fig.2.12 (b), in order to preserve the original processes
(i.e., to avoid process migration used by the default diagonal composition
semantics). A similar observation applies if temporal pointers are used: in
that case, we need to use a scenario semantics with vertical “back-arrows”
for diagonal composition operators.

Actually, the only restriction in place is for the diagonal and the iterated diagonal
compositions. Indeed, passing pointer variables via the connecting interfaces in
a diagonal program composition requires to use spatial (resp. temporal) pointer
variables over multiple processes (resp. transactions) and this is forbidden by the
above convention.

For another, this time semantic reason consider a while_st statement with
temporal pointer variables used for its iterated connecting temporal interface.
Then, one may have a potentially unbounded loop of actions to be done at the
same time cycle, which has to be avoided. (A similar constraint is used by many
temporal computation models. For example, in the dataflow networks model the
similar restriction says that no loop of actions is allowed if the actions are to be
done in the same time cycle. The common solution is to insert delay actions within
such loops.)

The Perfect program, revised. We illustrate the use of temporal pointers by
considering a variation of the Perfect1 program described in the previous sub-
section. In this new version, the divisibility check task is performed at various
computing speeds due to the effect of the divisibility check implementation (for
instance, if divisibility of n by x is implemented by a repeated subtraction of x
from n while(x>0){n=n-x};if(n=0){div=1}else{div=0}, then the
result is obtained faster for larger values of x) or due to an external reason (for
instance, the runtime variation of the processor load).

In the implementation below we consider the first possibility mentioned above.
The initial speed is set to be 1 and it is increasing by 1 with each transaction.
In k steps, the program is processing in turn 1, 2, . . . , k data, covering all the
data in the range 1 to n

2
for k = d−1+

√
1+4n

2
e. (Indeed, we observe that we have∑k

i=1 i =
k(k+1)

2
≈ n

2
.)

The new program Perfect2 is

(IL2 # IA # IR)
% while_t(x =< n/2){P2 # D2 # M2}
% (TL2 # TA # TR)
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module IL2{listen nil}{read n}{
tInt tn = n; Int x = 1; Int speed =
1;

}{speak tn}{write x,speed}

module P2{listen nil}{read x,speed}{
tInt tspeed = spead;
tInt ∧tx = t_alloc(speed *
sizeof_tInt);
for (i=0;i<speed;i++){&(tx+i)=x;
x++;};speed++;

}{speak ∧tx,tspeed}{write x,speed}

module D2{listen ∧tx,tspeed}{read y}{
for (i=0;i<tspeed;i++){
if(y % &(tx+i) !=0){&(tx+i)=0;};

}{speak ∧tx,tspeed}{write y}

module M2{listen ∧tx,tspeed}{read z}{
for (i=0;i<tspeed;i++){z = z -
&(tx+i);}

}{speak nil}{write z}

module TL2{listen nil}{read x,speed}{
tx = -1;

}{speak tx}{write nil}

Table 2.9: New modules of the Perfect2 program

Its new modules are listed in Table 2.9 and a scenario in Fig. 2.13.
The scenario in Fig. 2.13 describes the case n = 6. The variable tx is a tem-

poral pointer variable which can be used in the transaction using it. Progressively,
there are streams with 1, 2, . . . elements of type tInt allocated at this temporal
pointer. For instance, in the 3rd row there is a temporal stream allocation of 2
sizeof_tInt elements; these elements are separated by ‘_’.

The variable tx is defined and it gets stream allocation in module P2. Later
on, it is used by the modulesD2 andM2. Being a temporal pointer, tx constraints
all the modules using it to observe its temporal rules.

For instance, in the 3rd row of the scenario in Fig. 2.13 the following actions
take place (ordered in time): (1) P2 speaks 2 at its output stream at the time
specified by tx; then, D2 listens 2 and speaks 2 (the result of the divisibility
check) at the same time specified by tx; and, finally, M2 listens this value of D2
at the same time tx and uses it the update the value of z. Notice that the semantics
forces the implementation of the divisibility check be fast enough to return the
result within the time cycle specified by tx. (2) Next, P2 speaks 3 at its output
stream at the time corresponding to the pointer tx + 1; then, D2 listens 3 and
speaks 3 (the result of the divisibility check) at the time corresponding to tx + 1;
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and finally M2 listen this value at the same time and uses it to update z.

n=6 . .
. IL2 tx=6 IA tx=6 IR .
x=1,speed=1 y=6 z=6

. P2 tx=(1),tspeed=1 D2 tx=(1),tspeed=1 M2 .
x=2,speed=2 y=6 z=5

. P2 tx=(2_3),tspeed=2 D2 tx=(2_3),tspeed=2 M2 .
x=3,speed=3 y=6 z=0

. TL2 tx=-1 TA tx=-1 TR .
. . z=0

Figure 2.13: A scenario for the Perfect2 program

We emphasize the important difference in the execution semantics induces
by the presence of pointers. Without the constraints induced by the temporal
pointers, the common meaning of the execution is that a module such as P should
be completely finished before starting the execution of a next module in the row,
such as D2 here.

Eager evaluation semantics. To cope with the above informal semantics, one
has to add listen/read and speak/write statements into the modules code. Then,
an eager evaluation semantics can be develop for rv-programs: in this evaluation
strategy, modules and other pieces of code needed for producing running scenarios
start immediately and stop at the first listen/read statement waiting for the needed
data values; when a data value is available, the run resumes and continues until a
next stop where a needed value is not available; and so on.

However, there is a price to pay for this relaxed evaluation. An extra require-
ment for eager evaluation semantics is that on all possible runs all the variables in
the output interfaces have to receive one and only one value via speak/write state-
ments. This safeness strategy assures that all the variables in the output interfaces
get appropriate values, while the variables in the input interfaces may or may not
be used for producing them.

2.2.4 Case study: Congestion-aware NoC

In this subsection we present an rv-IS model of a congestion-aware NoC commu-
nication.

Informal presentation of the protocol. Consider a communication network
with one-way communication channels, in both directions, between certain nodes.
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For example, consider the networkGwith four nodes {1, 2, 3, 4} and channels be-
tween the nodes (1, 2), (2, 3) and (2, 4); the channels are denoted by c12, c21, c23, c32, c24, c42.
The contents of a channel cij is considered to be a (bounded) queue of messages
waiting to be processed by node j. The typical activity in a node i is the following:
| (irecv) node i receives a message sent to it from one of its incoming channels;
| (isend) node i inserts a new message it wants to sent via the network in an appro-
priate routing channel; and
| (iroute) node i routes a message from one of its incoming channels to an appro-
priate outgoing channel towards its destination.

Some part of network processing is presented in Fig. 2.10. Starting with a
configuration C0 of the messages in transit lying in the communication channels,
the processing does, in turn, one action for the nodes 1, 2, 3 and 4 (in this order).
We denote the messages sent from a node i to a node j as ai,j (the 1st), bi,j (the
2nd), and so on. In this example, in a first round node 1 inserts a message a1,3,
node 2 routes it, node 3 receives it, and node 4 inserts a4,2. The routing is done
along the shortest path, which in this example is unique for each pair of nodes. In
a next round, node 1 receives a2,1, node 2 receives a3,2, nodes 3 and 4 select to
receive messages, but there are no such messages in their incoming channels, so
they do nothing.

Act c12 c21 c23 c32 c24 c42 Notation
∅ a2,1

_a4,1 ∅ a3,2
_a3,4 ∅ b4,1 C0

1send → a1,3 a2,1
_a4,1 ∅ a3,2

_a3,4 ∅ b4,1 C1
2route → ∅ a2,1

_a4,1 a1,3 a3,2
_a3,4 ∅ b4,1 C2

3recv → ∅ a2,1
_a4,1 ∅ a3,2

_a3,4 ∅ b4,1 C3
4send → ∅ a2,1

_a4,1 ∅ a3,2
_a3,4 ∅ b4,1

_a4,2 C4

1recv → ∅ a4,1 ∅ a3,2
_a3,4 ∅ b4,1

_a4,2 C5
2recv → ∅ a4,1 ∅ a3,4 ∅ b4,1

_a4,2 C6
3recv → ∅ a4,1 ∅ a3,4 ∅ b4,1

_a4,2 C7
4recv → ∅ a4,1 ∅ a3,4 ∅ b4,1

_a4,2 C8

Table 2.10: A typical step in the Network program

We point out a particularity of the network communication modelled this way.
Due to nodes’ linearisation, the messages ai,j with i < j may have more receive
and routing actions in a round than the messages ai,j with i > j. This produces
a speedier processing of the network communications. If this is not the desired
behaviour and a more symmetric behaviour is seeked, then one can (1) mark the
messages which were already processed in the current round, (2) allow only un-
marked messages to be further processed in the current round, and finally, (3)
remove all marks at the end of the round.
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An rv-IS model with temporal pointers. Now we describe a model Network
with appropriate temporal pointers. The time information is local and reflects the
streaming order of the messages in the channels cij.

The routing is static in this paper, hence no change of the routing protocol
is made depending of the network congestion information. The network is also
static: no nodes are allowed to join or leave the network. However, adaptations
of our model to handle these dynamic aspects can be easily done. Finally, no
state change is visible in this abstract model after the receiving or sending of
messages. Nevertheless, the program below exports a minimal information on
states id,next to which any additional state information can be added.

The program Network is

(I1 # for_s(ti=1;ti=<tn;ti++){I} # I2)
$ while_st(L!=empty){N1 # r=1
# while_s(all (e_i,j - c_i,j) =< tC){

r++
# for_s(ti=1;ti=<tn;ti++){if(r%s_ti=0){N}}}

# N2 }

Its modules are presented in Table 2.11. The variables used in this program
have the following meaning. G denotes the network and n its number of nodes.
C is the maximal number of precessing data in any communication channel be-
fore recomputing the nodes’ processing speeds. S is the maximal slowdown. In
other words: if the speed is 1, the node is active in any cycle; if the speed is
S (the slowest speed), the node is active every S cycles. r counts the rounds.
A node is active in a round r if this count is a multiple of the node’s speed.
Next_node(tG,id,k) computes the next routing node in G from id for a
message with destination k. New_speed returns a value in {1,. . .,S}, repre-
senting the new processing rate to be used by a network’s node.

Initially, the speed is at the slowest rate and all communication channels are
empty.

Each channel (i,j) in G is a bounded queue. It is modelled as a temporal
structure of messages m_s,d, sent from a source s to a destination d. We suppose
each channel queue holds at most C items in a processing stage, before changing
the processing speeding rates. A temporal pointer c_i,j points to this structure.
There are two more temporal pointers associated to this channel: b_i,j, pointing
to the first message in the queue and e_i,j, pointing to the first free position in
the queue. The queue is empty if b_i,j = e_i,j and in that case b_i,j
points to a fake element.

The passing of communication data from one stage to another is done via the
temporal variable L=(L_i,j). L_i,j is a stream [a temporal array may do this
job too]. It collects the data lying in the channel c_i,j at the end of a processing
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stage; technically, these are the data in this communication channel between the
pointers b_i,j and e_i,j.

A processing stage starts, in the module N1, by allocating C temporal positions
for each channel c_i,j corresponding to an edge in G. Then, the data on the
stream L_i,j are reallocated in order to be accessed by the pointers b_i,j
(beginning of the message queue) and e_i,j (a free position after the ending of
the message queue). Next, for each node k a new speed is computed, to be used in
the current processing stage, by taking into account the quantity of the messages
lying into the channels adjacent to k. In this implementation, it is assumed that
a node can see how many messages are in its incoming and outgoing channels.
At the end of a processing stage, an opposite activity is inserting, as described in
module N2: the messages lying in a channel c_i,j between the pointers b_i,j
and e_i,j are collected into the stream L_i,j.

The basic activity of a node is described in module N. Here, in each invocation
of the module, the implementation randomly selects an activity: either it receives
a message sent to it, or sends a new message, or routes a message from one of its
incoming channels towards the destination. Such activities are performed if: (1)
there are messages to be received or routed; and (2) there is space on the outgoing
channels for the messages to be send or routed.

The adjustment of the processing rate to the nodes chosen speeds is imple-
mented by the coordination activity specified by the Network program. If the
speed of a node is set to be y, then the module N is activated for that node by the
Network program once every y cycles.

The allocation policies for the temporal streaming data associated to the chan-
nels c_i,j is left unspecified, considering the lower level running environment
to be in charge of it. It is not obvious from the code how different channels are
mapped on a global virtual stream. In particular, the scheduling should respect
the routing causality induced by the module N: if a message m_s,d is taken from
the pointer b_in,id and routed at the pointer e_id,next(d), then this latter
pointer should be scheduled after the former. This scheduling constraint may be
pretty tough as the nodes processing rates may vary in time.

More deterministic implementations. We can also model a more specific schedul-
ing information provided by the program. To this end, one can consider a global
trace gt. Each action performed by an invocation of the module N will increase
a pointer on this global trace by one. Instead of being an independent pointer
structure, each c_i,j is to be mapped by the program in this global trace. In
this case, the program itself may insure the routing causality. We discuss more on
scheduling in our technical report [14].
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2.2.5 The impact of temporal pointers on Event-B real-time
modelling

Event-B [3] is a state-based formalism based on Action Systems [6, 63] and the
B-Method [1]. In Event-B, the development of a model is carried out step by
step from an abstract specification to more concrete implementations. Models
in Event-B consist of contexts and machines. A context describes the static part
of a model, containing sets and constants, together with axioms about these. A
machine describes the dynamic part of a model, containing variables, invariants
(boolean predicates on the variables), and events, that evaluate and modify the
(shared) variables. Each event has an associated boolean predicate named guard,
which determines if the event can execute (we say it is enabled) or not. Compu-
tation proceeds by repeated non-deterministic choice and execution of an enabled
event. In [13], we have proposed a translation from Event-B to rv-IS. Essentially,
each event is split into a guard module and an updating module; a manager mod-
ule is responsible for determining what events are enabled; the shared memory
reading and updating is simulated.

The NoC case studies in this paper are inspired by an approach to congestion-
awareness in NoCs, modeled in Event-B in [17]. The work in [17] extends [16]
and [18] where unicast and multicast NoC routing is addressed respectively, with
Event-B. Congestion is treated in two ways in [17]. At an architectural level, when
buffer congestion overcomes a certain threshold, the IP core voltage is increased,
so that messages are treated faster and consequently removed from the buffers.
Furthermore, the congestion-aware XYZ routing algorithm in a three dimensional
NoC slightly modifies the deterministic XYZ algorithm: instead of messages be-
ing routed to their destination first on the X coordinate, then on the Y coordinate
and finally on the Z coordinate, they are routed first on the coordinate where a
non-congested buffer is detected.

In this paper, we model congestion-awareness in rv-IS with temporal pointers,
based on a variant of changing the IP core speed (voltage). Our model here is
intentionally more general and non-deterministic than in [17], in order to explore
various modeling avenues. Analyzing the implications of the model presented
in Subsection 2.2.4 on modeling time-awareness in Event-B, we reach several
conjectures, outlined in the following.

First, we note that independent events in an Event-B model - events that read
and update disjoint sets of variables - could execute in parallel (processes) if they
could synchronize their outputs. This is clearly achievable with the temporal
streams of rv-IS.

Second, the finer-grained synchronization we propose makes it possible to
execute the same module several times at the same clock tick, when synchronizing
the communication between modules with temporal pointers. This improves the
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efficiency of the model and can prove very beneficial to NoC computing.
Third, we could apply the same idea from our modeling in Subsection 2.2.4 to

the Event-B modeling in [17]. Namely, we could model that, for energy saving,
each IP core in a NoC adjusts its active/inactive status to the traffic it currently
detects. Nodes are thus active only in certain cycles. This implies some global
synchronization which is implicit anyway, such as for event guards evaluation to
determine the next event(s) to execute.

2.2.6 Conclusions
In this paper we have proposed a finer-grained synchronization model for par-
allel processing in rv-IS, to be applied to Event-B modeling of timing aspects.
Our approach is based on (temporal) pointers and is presented in more detail in
our technical report [14]. Our concepts are illustrated with a small example on
congestion-awareness NoC computing, a more simplistic version of which has
been earlier presented in [17]. We believe that our approach has potential in pro-
viding an interesting approach to time modeling in Event-B, especially given our
earlier introduced translation [13] between these two formalisms.

The rv-IS model is based on a space-time duality principle. Sometimes, this
may look unconvincing, as, intuitively, one has the insight that time and space are
quite different entities. The introduction of pointers appears to break down the
space-time duality principle: for instance, with an extra space one can swap two
memory elements in the same space, but it is not at all clear how to swap two
stream values in the same temporal slots, using an extra time slot (such require-
ments may be specified with pointers, but not in the standard pointer-free rv-IS
model). This simply shows that temporal pointers should be used carefully. In
fact, even normal spatial pointers are considered harmful and avoided as much as
possible by current programming practice. Hence, we think the same is true for
temporal pointers.
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module I1{listen nil}{read n,G,C,S}{tn=n; tG=G;
tC=C; tS=S;}{speak tn,tG,tC,tS}{write nil}

module I{listen tn,tG,tC,tS,ti}{read nil}{
id=ti; for(k=1;k=<tn;k++){
if(k!=id){next(k)=Next_node(tG,id,k)}};

}{speak tn,tG,tC,tS,ti}{write id,next}

module I2{listen tn,tG,tC,tS}{read nil}{
for all (i,j) edge in tG{ L_i,j = empty;}

}{speak tn,tG,L=(L_i,j),tC,tS}{write nil}

module N1{listen tn,tG,L,tC,tS}{read nil}{
for all (i,j) edge in tG{
tInt ∧c_i,j = t_alloc(tC * sizeof_tInt);
tInt ∧b_i,j = c_i,j; ∧e_i,j = c_i,j;
while(L_i,j != empty && L_i,j = m_s,d_X){
&e_i,j = m_s,d; e_i,j++; L_i,j = X;};}

for(k=1;k=<tn;k++){
Traffic = Sum{length(L_i,j), for (i=k or j=k)};
s_i = New_speed(Traffic,tS);}

}{speak tn, tG, L1=(∧c_i,j,∧b_i,j,∧e_i,j),
S1=(s_i),tC,tS}{write nil}

module N{listen tn,tG,L1,S1,tC,tS,ti}{read id,next}{
k = random in {1,2,3};
switch(k){
case k=1: //send zero or one item
m_id,d = random, with m∈Msg and d∈{1,. . .,tn}\{id};
if(e_id,next(d) =< tC){
&e_id,next(d) = m_id,d; e_id,next(d)++;

} else {postpone sending};
case k=2: //receive zero or one item
in = random, with b_in,id != e_in,id
and &b_in,id = m_s,d and d = id;

if(in != empty){b_in,id++};
case k=3: //route zero or one item
in = random, with b_in,id != e_in,id
and &b_in,id = m_s,d and d != id;

if(in != empty && e_id,next(d) =< tC){
&e_id,next(d) = m_s,d; e_id,next(d)++;
b_in,id++;}

}
}{speak tn,tG,L1,S1,tC,tS,ti}{write id,next}

module N2{listen tn,tG,L1,S1,tC,tS}{read nil}{
for all (i,j) edge in tG{ L_i,j = empty;

while(b_i,j != e_i,j){
L_i,j = L_i,j_&b_i,j; b_i,j++;};}

}{speak tn,tG,L=(L_i,j),tC,tS}{write nil}

Table 2.11: Modules of the Network program
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Chapter 3

Model-based testing and finite state
representations for Event-B

Contributors: Ionut Dinca (UniPit), Florentin Ipate (UniPit), Raluca Lefticaru
(UniPit), Michael Leuschel (UDUS), Laurentiu Mierla (UniPit), Daniel Plagge
(UDUS), Alin Stefanescu (UniPit), Cristina Tudose (UniPit), and Sebastian Wiec-
zorek (SAP)The main topic of this research is model-based testing (MBT) for Event-B,
that is test generation from Event-B models. This is an important subject that has
not received much attention until now. Moreover, it is a specific requirement from
the deployment partner SAP.

Among the several ideas investigated in the project, in this chapter we focus
on MBT using techniques like automata-learning, meta-heuristics searches and
multi-objective optimizations, described in the following three sections. The last
section presents a Rodin plug-in implementing these methods. Experiments prob-
ing the efficiency of the prototype were performed on benchmarks of Event-B
models from the DEPLOY repository.

The material in this chapter is based on several papers already accepted or
under review: [104] used in Section 3.1, [105] used in Section 3.2, [79] and [146]
used in Section 3.3, [132] used in Section 3.4, and [70] used in Section 3.5.

Note that in this chapter we only report work done by UniPit. In DEPLOY En-
larged EU, also University of Dusseldorf (UDUS) and SAP investigated MBT for
Event-B (using model checking or constraint solving). We do not report this work
here, because this work was already reported in other deliverables, namely Deliv-
erable D44 (see Chapter 10) and Deliverable D42 (see Chapter 4), and the joint
paper with SAP [69]. Moreover, to these deliverables contributed also UniPit, so
there is a bit of overlap between these deliverables and the current one (Section
3.1 and Section 3.4). However, the rest of the sections in this chapter are new.

The research in this chapter was performed under the Task 9.10 of the DE-
PLOY Extended EU DoW.
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3.1 Model-learning and MBT for Event-B
We propose an approach which, given a state-transition model of a system, con-
structs, in parallel, an approximate automaton model and a test suite for the
system. The approximate model construction relies on a variant of Angluin’s
automata learning algorithm, adapted to finite cover automata. A finite cover
automaton represents an approximation of the system which only considers se-
quences of length up to an established upper bound `. Crucially, the size of the
cover automaton, which normally depends on `, can be significantly lower than
the size of the exact automaton model. In this way, by appropriately setting the
value of the upper bound `, the state explosion problem normally associated with
constructing and checking state based models can be addressed. The proposed
approach also allows for a gradual construction of the model and of the associ-
ated test suite, with complexity and time savings, but also with improvements in
the accurateness of the obtained models and tests. The approach is presented and
implemented in the context of the Event-B modeling language, but its underly-
ing ideas and principles are much more general and can be applied to any system
those behavior can be suitably described by a state-transition model.

The concept of state is at the heart of model-based testing and many test gen-
eration techniques from finite state machines (FSMs) exist. However, FSMs are
not powerful enough to efficiently model realistic systems and so extended finite
state machines (EFSMs), such as Statecharts, are used instead; these combine a
FSM-like control with suitable data variables and operations for these variables,
to offer an intuitive, yet rigorous means for system modeling and analysis. Testing
from an EFSM usually involves transforming the EFSM into an equivalent FSM
(whose states are given by the state-variable value combinations of the original
EFSM) and then applying FSM-based test generation techniques. However, for
many systems, the equivalent FSM may have many more states than the length
of the tests that can realistically be performed, or, furthermore, the number of
states of the resulting FSM may be so large that it is impossible to even construct
it. This is the well-known state explosion problem. Despite the existence of nu-
merous techniques for alleviating this problem, state explosion remains one of the
major obstacles for efficient model-based test generation from state-based models.

In this section we propose an approach which, given a state-transition model
(EFSM) of a system, constructs, in parallel, an approximate FSM model and a
test suite for the system. The (approximate) model construction relies on a variant
of Angluin’s automata learning algorithm [74], adapted to finite cover automata
[106]. A finite cover automaton [76] of a finite set L is a finite automaton which
accepts all sequences in L but may also accept sequences that are longer than ev-
ery sequence in L. The main advantage of a finite cover automaton is that its size
(number of states), which normally depends on `, can be significantly lower than
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the size of the automaton which accepts exactly the language L [76]. In practice,
an upper bound ` on the length of the considered sequences will be established
and the constructed model will have to conform to the original model for all se-
quences of length at most `. In this way, by appropriately setting the value of the
bound `, the state explosion problem normally associated with constructing and
checking state based models can be addressed. Furthermore, test generation from
finite cover automata fits very well with common testing practices, that usually
require test cases of short to medium length and can also be regarded as a natural
complement to Bounded Model Checking (BMC) based on SAT methods [77],
which is gaining popularity in the formal verification community.

The proposed approach also allows for a gradual construction of the model
and of the associated test suite: the FSM model and test suite for an initial version
of the system are reused in the construction of a more elaborated and complex
version, with complexity and time savings, but also with improvements in the
accurateness of the obtained models and tests.

The approach is presented and implemented for the Event-B modeling lan-
guage, but its underlying ideas and principles are much more general and can
be applied to any system those behavior can be suitably described by a state-
transition model. As Event-B does not even distinguish between state and data
variables, such models are very suitable means for evaluating our approach.

Given an Event-B model and an upper bound `, the proposed approach will
incrementally construct finite cover automata that will eventually accept all exe-
cutable sequences of length less than or equal to `. As a by-product of the au-
tomata learning algorithm, a set of test cases associated with the cover automata
is also maintained and evolved during the iterations. This test suite can be used
for conformance testing of the modeled system. The test cases in the test suite are
provided together with the associated test data that makes them executable on the
Event-B model.

The contributions of our approach are threefold:

− first, it constructs a successive set of finite approximation models for the set
of Event-B executable traces up to a length `. The construction exploits the
restriction given by the bound ` to obtain models of reduced size (number of
states) compared to exact automaton models. Moreover, the cover automata
are minimal by construction.

− second, in parallel with automata construction, we incrementally generate
conformance test suites for the investigated Event-B models. By construc-
tion, the generated test cases satisfy certain minimality properties regarding
their lengths. This fits very well with the testing practice that usually re-
quires short test cases.
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− third, the Event-B method deploys model refinement as a means to handle
modeling complexity. The two contributions above can be applied incre-
mentally, allowing the reuse of the learned model and test cases from the
abstract to the more concrete levels.

The section is structured as follows. Subsection 3.1.1 recalls theoretical foun-
dations, including the used algorithm for the cover automata. Subsections 3.1.3
and 3.1.5 describe the adaptation to Event-B and its implementation, respectively.
Subsection 3.1.7 concludes the section.

3.1.1 Theoretical background
This subsection, which is largely adapted from our previous work [106], presents
the L` algorithm and its automata-related concepts.

Before continuing, we introduce the notations used in the section. For a finite
alphabetA, A∗ denotes the set of all finite sequences with members inA. ε denotes
the empty sequence. For a sequence a ∈ A∗, ‖a‖ denotes the length (number of
symbols) of a; in particular ‖ε‖ = 0. For a finite set of sequences U ⊆ A∗, ‖U‖
denotes the length of the longest sequence(s) in U . For a, b ∈ A∗, ab denotes the
concatenation of sequences a and b. an is defined by a0 = ε and an = an−1a,
n ≥ 1. For U, V ⊆ A∗, UV = {ab | a ∈ U, b ∈ V }; Un is defined by U0 = {ε}
and Un = Un−1U, n ≥ 1. A[n] =

⋃
0≤i≤nA

i denotes the sets of sequences of
length less than or equal to n with members in the alphabet A. For a sequence
a ∈ A∗, b ∈ A∗ is said to be a prefix of a if there exists a sequence c ∈ A∗ such
that a = bc. The set of all prefixes of a is denoted by pref(a); for U ⊆ A∗,
pref(U) =

⋃
a∈U pref(a). For a sequence a ∈ A∗, b ∈ A∗ is said to be a suffix of

a if there exists a sequence c ∈ A∗ such that a = cb. For a finite set A, card(A)
denotes the number of elements in A.

Finite automata - general concepts

We start by introducing some classic definitions from automata theory.
A deterministic finite automaton (DFA) M is a tuple (A,Q, q0, F, h), where:

A is the finite input alphabet; Q is the finite set of states; q0 ∈ Q is the initial
state; F ⊆ Q is the set of final states; h is the next-state, h : Q × A −→ Q. A
DFA is usually described by a state-transition diagram.

The next-state function h can be naturally extended to a function h : Q ×
A∗ −→ Q. A state q ∈ Q is called reachable if there exists s ∈ A∗ such that
h(q0, s) = q. M is called reachable if all states of M are reachable.

Given q ∈ Q, the set Lq
M is defined by Lq

M = {s ∈ A∗ | h(q, s) ∈ F}. When
q is the initial state of M , the set is called the language accepted by M and the
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simpler notation LM is used. Given Y ⊆ A∗, two states q1, q2 ∈ Q are called Y -
equivalent ifLq1

M∩Y = Lq2
M∩Y . Otherwise q1 and q2 are called Y -distinguishable.

If Y = A∗ then q1 and q2 are simply called equivalent or distinguishable, respec-
tively. Two DFAs are called (Y -)equivalent or (Y -)distinguishable if their initial
states are (Y -)equivalent or (Y -)distinguishable, respectively.

A DFA M is called reduced if every two distinct states of M are distinguish-
able. A DFA M is called minimal if any DFA that accepts LM has at least the
same number of states as M . A DFA M is minimal if and only if M is reachable
and reduced. Furthermore, there is an unique (up to a renaming of the state space)
minimal DFA that accepts a given regular language.

Now let us also introduce the concept of deterministic finite cover automaton
(DFCA). Informally, a DFCA of a finite language U , as defined by Câmpeanu et
al. [76], is a DFA that accepts all sequences in U and possibly other sequences
that are longer than any sequence in U .

In this section we use a slightly more general concept, as defined in [106]:
given a finite language U ⊆ A∗ and a positive integer ` that is greater than or
equal to the length of the longest sequence(s) in U , a deterministic finite cover
automaton (DFCA) of U w.r.t. ` is a DFA M that accepts all sequences in U
and possibly other sequences that are longer than `, i.e. LM ∩ A[`] = U , where
A[`] :=

⋃
0≤i≤`A

i. A DFCA M of U w.r.t. ` is called minimal if any DFCA of U
w.r.t ` has at least the same number of states as M . Note that, unlike the case in
which the acceptance of the exact language is required, the minimal DFCA is not
necessarily unique (up to a renaming of the state space) [106].

Naturally, a DFA that accepts a finite language U is also a DFCA of U w.r.t.
any ` ≥ ‖U‖. Consequently, the number of states of a minimal DFCA of U w.r.t.
` will not exceed the number of states of the minimal DFA accepting U . Further-
more (and more importantly from the point of view of practical applications), the
size of a minimal DFCA of U w.r.t. ` can be much smaller than the size of the
minimal DFA that accepts U [106].

The L` algorithm for learning finite cover automata

Learning regular languages from queries was introduced by Angluin in [74]; the
paper also provides a learning algorithm, called L∗. The L∗ algorithm infers a
regular language, in the form of a DFA from the answers to a finite set of mem-
bership queries and equivalence queries. A membership query asks whether a
certain input sequence is accepted by the system under test or not. In addition to
membership queries, L∗ uses equivalence queries to check whether the learning
algorithm is completed.

In a recent paper [106], we extended Angluin’s work by proposing an algo-
rithm, called L`, for learning a DFCA. Given an unknown finite set U and a known
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integer ` that is greater than or equal to the length of the longest sequence(s) in
U , the L` algorithm will construct a minimal DFCA of U w.r.t. `. Analogously to
L∗, the L` algorithm uses membership and language equivalence queries to find
the automaton in polynomial time.

The L` algorithm construct two sets: S, a non-empty, prefix-closed set of
sequences and W , a non-empty, suffix-closed set of sequences. Additionally, S
will not contain sequences longer than ` and W will not contain sequences longer
than `− 1, i.e. S ⊆ A[`] and W ⊆ A[`− 1].

The algorithm keeps an observation table, which is a mapping T from a set of
finite sequences to {0, 1,−1}. The sequences in the table are formed by concate-
nating each sequence of length at most ` from the set S ∪ SA with each sequence
from the set W . Thus, the table can be represented by a two-dimensional array
with rows labeled by elements of (S∪SA)∩A[`] and columns labeled by elements
of W .

The function T : ((S ∪ SA)∩A[`])W −→ {0, 1,−1} is defined by T (u) = 1
if u ∈ U , T (u) = 0 if u ∈ A[`] \ U and T (u) = −1 if u /∈ A[`]. The values 0 and
1, respectively, are used to indicate whether a sequence is contained in U or not.
However, only sequences of length less than or equal to ` are of interest. For the
others, an extra value, −1, is used.

In order to compare the rows in the observation table, a relation on these rows,
called similarity, is used. We say that rows s and t are k-similar, 1 ≤ k ≤ `, and
write s ∼k t if, for every w ∈ W with ‖w‖ ≤ k − max{‖s‖, ‖t‖}, T (sw) =
T (tw). Otherwise, s and t are said to be k-dissimilar, written s 6∼k t. In other
words, the table values of rows s and t must coincide for every column w for
which the lengths of sw and tw are both less than or equal to k. The relation∼k is
not an equivalence relation since it is not transitive [106]. When k = `, we simply
say that s and t are similar or dissimilar and write s ∼ t or s 6∼ t, respectively.
It can be observed that similarity of rows s and t requires all corresponding non-
negative values of the two rows to coincide.

Using the similarity relation, two properties of an observation table are de-
fined: consistency and closedness.

The observation table is consistent if, for every k, 1 ≤ k ≤ `, whenever rows
s1 ∈ S and s2 ∈ S are k-similar, rows s1a and s2a are also k-similar for all a ∈ A.

The observation table is closed if, for all rows s ∈ SA, there exists row t ∈ S
with ‖t‖ ≤ ‖s‖, such that s ∼ t.

Consider, for example, A = {a, b}, ` = 3 and Table 3.1 (left hand side) - in
which a double horizontal line is used to separate the rows labeled with elements
of S from the rows labeled with elements of SA\S - to be the current observation
table (S = {ε, a, b, aa, bb}, W = {ε, a}). The observation table is not consistent
since, for k = 2, s1 = ε, s2 = b, w = ε and α = b satisfy s1 ∼k s2, but
T (s1αw) 6= T (s2αw). On the other hand, the observation table is closed.
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T ε a
ε 0 0
a 0 1
b 0 0
aa 1 0
bb 1 0

ab 0 0
ba 0 0
aaa 0 −1
aab 0 −1
bba 0 −1
bbb 0 −1

T ε a b
ε 0 0 0
a 0 1 0
b 0 0 1
aa 1 0 0
bb 1 0 0

ab 0 0 0
ba 0 0 1
aaa 0 −1 −1
aab 0 −1 −1
bba 0 −1 −1
bbb 0 −1 −1

Table 3.1: Observation table of running example (left table) and its updated form
that is consistent and closed (right table)

The algorithm starts with S = W = {ε}. It periodically checks the con-
sistency and closedness properties and extends the table accordingly. When both
conditions are met, the DFAM(S,W, T ) corresponding to the table is constructed
(details will be provided later on) and it is checked whether the language L ac-
cepted by M(S,W, T ) satisfies L ∩ A[`] = U (this is called a “language query”).
If the language query fails, a counterexample t is produced, the table is expanded
to include t and all its prefixes and the consistency and closedness checks are per-
formed once more. Eventually, the language query will succeed and the algorithm
will return a minimal DFCA of U w.r.t. `.

Since in our approach we will separate the construction of the observation ta-
ble and of the corresponding DFCA (which is the actual processing performed
by the algorithm) from the language queries (which represent the user interven-
tion), only the processing performed between two language queries is presented in
pseudo-code in Fig. 3.1 (in what follows this will be referred to as the LearnDFCA
procedure).

The LearnDFCA procedure starts with the current values of S, W and the
current observation table T . It periodically checks whether the consistency and
closedness properties are violated and extends the table by adding a new row or a
new column to the table, respectively:

− In order to check consistency, the procedure will search for w ∈ W and
a ∈ A such that aw will distinguish between two rows s1 and s2 that are not
distinguished by any sequences in W of length less than or equal to aw; in
order to find the shortest such sequence aw, the search will be performed in
increasing order of length of w. The search is repeated until all elements of
W have been processed; as these are processed in increasing order of their
length, any sequence aw that has been added toW as a result of an incorrect
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——————————————————————————-
Procedure LearnDFCA
——————————————————————————-
Input: S, W and the current observation table T .
Repeat
\— Check consistency —\
For every w ∈W , in increasing order of ‖w‖ = i do

Search for s1, s2 ∈ S with ‖s1‖, ‖s2‖ ≤ `− i− 1
and a ∈ A such that s1 ∼k s2, where
k = max{‖s1‖, ‖s2‖}+ i+ 1, and T (s1aw) 6= T (s2aw).
If found then

Add aw to W .
Extend T to (S ∪ SA)W using membership queries.

\— Check closedness —\
Set new_row_added = false.
Repeat for every s ∈ S, in increasing order of ‖s‖

Search a ∈ A such that sa 6∼ t ∀t ∈ S with ‖t‖ ≤ ‖sa‖.
If found then

Add sa to S.
Extend T to (S ∪ SA)W using membership queries.
Set new_row_added = true.

Until new_row_added or all elements of S were processed
Until ¬new_row_added
Construct M(S,W, T ).
Return M(S,W, T ).
——————————————————————————-

Figure 3.1: The learning procedure LearnDFCA

consistency check will be itself processed in the same “For” loop.

− In order to check closedness, the procedure will search for s ∈ S and a ∈ A
such that sa is dissimilar to any of the current rows t for which ‖t‖ ≤ ‖sa‖;
similarly, the search is performed in increasing order of length of s. If such s
and a are found, then sa is added to the observation table and the algorithm
will check again its consistency.

Consider once again Table 3.1 (left hand side) as the current observation table.
This will fail the consistency check for i = 0 and k = 2: s1 = ε, s2 = b, w = ε
and α = b satisfy s1 ∼k s2, but T (s1αw) 6= T (s2αw). Consequently, αw = b is
added to W and so Table 3.1 (right hand side) is the resulting observation table.
This is both consistent and closed and so the DFA M(S,W, T ) is constructed.
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The state set of DFA M(S,W, T ) is formed by taking all minimum, mutually
dissimilar sequences from S, where the minimum is taken according to the quasi-
lexicographical order on A∗ [106]. For Table 3.1 (right hand side), this is Q =
{ε, a, b, aa} (since bb ∼ aa) and the corresponding DFA is as represented in Fig.
3.2 (in which final states are drawn in double line, whereas non-final states are
drawn in single line; the initial state is q0). The formal definition ofM(S,W, T ) is
given in [106], for simplicity this is not reproduced here. Further details regarding
the L` algorithm, including proofs of correctness and termination and examples
which illustrate its functioning, can also be found in [106].

q0 q1 q2

q3

a a

b b

b

a,b

a

Figure 3.2: The DFA corresponding to Table 3.1 (right hand side)

3.1.2 Black-box testing for finite cover automata
Before proceeding, we briefly outline the W -method for bounded sequences,
which we proposed in [103]. This is not central to our approach, but may be
used for answering language queries, as discussed later.

Given a DFCA model M = (A,Q, q0, F, h) of a system and an upper bound `,
this method generates a set of sequences to check if the implementation under test,
which is modeled by an unknown finite automaton I , behaves as defined byM for
all sequences of length at most `. In other words, if the languages accepted by
M and I are LM and LI , respectively, the W -method will construct a finite set of
sequences X ⊆ A[`] such that LM ∩X = LI ∩X implies LM ∩A[`] = LI ∩A[`].

The implementation is a black box and so, naturally, I is not known; however,
it is assumed that the maximum number of states of I can be estimated; the differ-
ence between this estimated maximum and the number of states of M is denoted
by k (if the difference is negative then we take k = 0).

Naturally, one can always take X to be the set of all sequences of length up to
`; however, the W -method produces a much smaller set, whose size is polynomial
in the number of states of M (but exponential in k). The construction of X is
based on two sets: a proper state cover S and a strong characterization set W of
M . S is called a proper state cover of M if it contains sequences of minimum
length that reach all states of M , i.e. for every q ∈ Q there exists s ∈ S such
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that: h(q0, s) = q and ‖s‖ ≤ ‖t‖ for every t ∈ A∗ for which h(q0, t) = q. W
is called a strong characterization set if it contains sequences of minimum length
that distinguish between any pair of states of the DFCA, i.e. for every q1, q2 ∈ Q,
q1 6= q2 there exists w ∈ W such that: w distinguishes between q1 and q2 and
‖s‖ ≤ ‖t‖ for every t ∈ A∗ which distinguishes between q1 and q2. Then, for an
estimated value of k, the test set has the form Xk = SA[k + 1]W ∩ A[`]. 1

The W -method for bounded sequences [103], is a non-trivial generalization
of the W -method for checking functional equivalence (also called the Vasilevski-
Chow method). 2

3.1.3 Model learning and test generation

We are now ready to present how we can apply the above theoretical harness. We
first describe the Event-B modeling environment. Then we present our approach
for incremental cover automata learning and test generation for Event-B models.
The notion of refinement is also discussed at the end of the section.

Usually, in an Event-B model, all states which can be reached by feasible se-
quences of events are considered to be final states. Obviously, in this case only
one non-final state is sufficient - a “sink” state which collects all infeasible paths.
Although this is the situation we have encountered in all applications considered
in this section, our approach is in no way restricted to this particular case. Fur-
thermore, it would also be possible to differentiate between reachable and final
configurations in an Event-B model by using a logical predicate on the global
variables, i.e. a state is considered final only if the predicate holds.

Given an Event-B model, a test case can be defined as a sequence of events.
This can be either positive, if it corresponds to an executable (feasible) path
through the Event-B model, or negative, otherwise. The executability of a test
case implies the existence of appropriate test data for the events, i.e. appropri-
ate values for the local parameters that ensure that the guard of the event is true.
Finally, a test suite is by definition a collection of test cases.

Incremental model learning

We will apply now the cover automata learning method of Section 3.1.1 to the
Event-B framework. The input elements for the procedure were a finite language
U and a bound `. For an Event-B model, U will be the set of all executable event

1The model M is assumed to be a minimal DFCA of LM ∩A[`] w.r.t ` (if not, it is minimized
before the method is applied), so both a proper state cover and a strong characterization set exist.

2[103] gives the results for Mealy machines, whereas here we adapted them for finite state
machine acceptors.
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——————————————————————————-
Procedure IterativeConstructionDFCA
——————————————————————————-
Input: S0, W0

Set S = S0 and W =W0

Construct T for (S ∪ SA)W
LearnDFCA
While the constructed automaton M(S,W, T ) is not correct do

Provide a counterexample w
Add w and all its prefixes to S
Extend the observation table T to (S ∪ SA)W
LearnDFCA

Minimize S and W
Output: M(S,W, T ), (minimized) S and W , observation table
and the corresponding test sequences
——————————————————————————-

Figure 3.3: The iterative procedure of constructing the DFCA

sequences of length maximum `. The alphabet of U is the set of events in the
model, which we denote by A.

Given the above U and `, our approach gradually constructs both (1) a DFCA
for the Event-B model and (2) an associated test set. The test set will be con-
structed using information from the observation table (paths through the model)
and the actual test data to drive the executable paths. In this subsection we dis-
cuss the model learning cycle and in the following two subsections the test suite
creation.

The proposed procedure consists of a number of steps; at each step, a new
DFCA and test set is produced. The outline of this procedure is depicted in
Fig. 3.3. Unlike the original L` algorithm, the procedure does not start with empty
S andW , but with some initial values S0 andW0, which reflect the current knowl-
edge about the DFCA model.

In case S0 and W0 are carefully chosen by a human with a good insight in
the model, the constructed M(S,W, T ) will be close to the correct DFCA and
so the “while”-loop will be executed fewer times or not at all, saving in this way
computational resources. At limit, when either S0 orW0 are correctly chosen from
the outset, the constructed M(S,W, T ) will be correct and the “while”-loop will
not be executed at all. (In Subsection 3.1.6 we show that a proper state cover of
the Event-B model is such a “correctly chosen” S0 and a strong characterization
set is a “correctly chosen” W0.)

Otherwise, whenever the DFCA is found to be inaccurate, a counterexample
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(i.e. a sequence s with ‖s‖ ≤ ` such that s ∈ U but s is not accepted by the
DFCA or vice versa) must be found and the observation table should be extended
accordingly. Practical modalities for finding such a counterexample will discussed
later in this section.

Therefore, two main cases can be distinguished:

− Case 1: The procedure is executed for the first time. In this case, the initial
sets S0 and W0 are based on an initial estimation of the states of the model.
In the worst case (when no initial estimation is available), we take S0 = {ε},
W0 = {ε}∪A. (As it emerged from our empirical evaluation (Section 3.5.3),
in many cases states can be distinguished by singleton sequences, and so
initially we consider W to contain all event names, i.e. A).

− Case 2: The procedure has already been applied at least once and, con-
sequently, a DFCA model exists. Suppose that this model is not totally
accurate and needs to be improved. This may happen for a number of rea-
sons:

– Subcase 1: the Event-B model has been modified or augmented due
to changes in the requirements.

– Subcase 2: the Event-B model has not been changed but the associ-
ated DFCA is deemed to be insufficient for testing purposes. In this
case, the upper bound ` is increased according to the existing testing
needs and the procedure is executed once more for the new value of `.

– Subcase 3: the existing Event-B model has been refined and extra
detail has been added (using the Event-B refinement). This subcase
will be discussed later in subsection 3.1.4.

In this (second) case, S0 and W0 are the values of S and W from the previ-
ous iteration. In fact, it is not necessary to reuse the entire sets S andW . As
shown in Subsection 3.1.6, It is sufficient to extract from them two minimal
subsets Smin ⊆ S and Wmin ⊆ W , where Smin is the set of all minimum,
mutually dissimilar sequences from S, and Wmin is the set of minimum se-
quences from W which distinguish between any two dissimilar sequences
of S (the formal definitions are given in Subsection 3.1.6) - this corresponds
to the minimization step in Fig. 3.3.3 The construction of Smin and Wmin

is not computationally expensive; both these subsets are selected by simply
scanning the observation table, so the complexity is linear in its size. Addi-
tionally, Smin is actually the state set of M(S,W, T ), so it is computed by

3Intuitively, this is because Smin and Wmin still remain a proper state cover and a strong
characterization set of M(S,W, T ), so the language equivalence (modulo the upper bound `)
against any other automaton with the same number of states is ensured.
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the algorithm anyway. The observation table T (corresponding to the mini-
mized S and W ) is also partially/totally re-constructed in the next iteration
as follows. In the first subcase, since the Event-B model has been changed,
the value of T must be re-checked for all sequences in (S ∪ SA)W ∩ A[`].
In the second subcase, only the sequences in (S ∪ SA)W whose length is
greater than the previous ` need to be re-processed.

Note that (Case 2 / Subcase 1) can also be applied even if the procedure has
not been applied before but an automaton model of the system exists from other
sources (e.g. has been developed during the design phase), but has become ob-
solete. In this case, Smin and Wmin can also derived from the existing model, as
explained above, so the information contained in the existing model is reused in
the construction of the new model,

Example. We illustrate the iterative process of constructing the DFCAs with
a system for controlling the cars on a narrow bridge between an island and the
mainland. This example is particularly relevant since it is used to introduce the
main Event-B concepts in Abrial’s textbook [94].

The modeled system is equipped with two traffic lights with two colors: green
and red. The traffic lights control the entrance to the bridge at both ends. Cars
are not supposed to pass on a red traffic light, only on a green one. There are
also some car sensors situated at both ends of the bridge which are used to detect
the presence of a car entering or leaving the bridge. The system has two main
additional constraints: the number of cars on the bridge and island is limited and
the bridge is one-way.

We present here only the first two levels of refinement (see Fig. 3.4 and Fig.
3.5). The first model M0 is very simple. The events ML_out and ML_in corre-
spond to cars entering and leaving the island-bridge compound, respectively. The
context contains a single constant d, which is a natural number denoting the max-
imum number of cars allowed to be on the island-bridge compound at the same
time. The single variable n of the machine M0 denotes the actual number of cars.

In the first refinement, the machine M1 introduces the bridge. The events
ML_out and ML_in correspond now to cars leaving the mainland and entering
the bridge or leaving the bridge and entering the mainland, respectively. In ad-
dition, the events IL_in and IL_out correspond to cars entering and leaving the
island, respectively. The variable n is now replaced by three variables: a (the
number of cars on the bridge and going to the island), b (the number of cars on the
island) and c (the number of cars on the bridge and going to the mainland).

Finally, the second refinement introduces the two traffic lights, named ml_tl
and il_tl. The model M2 has two new events to turn the value of the traffic lights
color to green when they are red: ML_tl_green and IL_tl_green. In order to
make the colors change in a more disciplined way, two more variables ml_pass
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————————————————————————————————————
MachineM0:

Variables: n
Event INITIALISATION =̂ begin n := 0 end
Event ML_out =̂ when n < d then n := n+ 1 end
Event ML_in =̂ when n > 0 then n := n− 1 end

————————————————————————————————————
MachineM1 refinesM0 :
Variables: a, b, c
Event INITIALISATION =̂ begin a, b, c := 0, 0, 0 end
Event ML_out refines ML_out =̂ when a+ b < d ∧ c = 0 then a := a+ 1 end
Event ML_in refines ML_in =̂ when c > 0 then c := c− 1 end
Event IL_in =̂ when a > 0 then a, b := a− 1, b+ 1 end
Event IL_out =̂ when 0 < b ∧ a = 0 then b, c := b− 1, c+ 1 end

————————————————————————————————————
MachineM2 refinesM1 :

Variables: a, b, c,ml_tl, il_tl, il_pass,ml_pass
Event INITIALISATION =̂ begin (a, b, c := 0, 0, 0),

(ml_tl, il_tl := red, red),
(il_pass,ml_pass := 1, 1)

end
Event ML_out1 refines ML_out =̂ when ml_tl = green ∧ a+ b+ 1 < d

then a,ml_pas := a+ 1, 1 end
Event ML_out2 refines ML_out =̂ when ml_tl = green ∧ a+ b+ 1 = d

then (a,ml_pas := a+ 1, 1),ml_tl := red end
Event IL_out1 refines IL_out =̂ when il_tl = green ∧ b > 1

then (b, c := b− 1, c+ 1), il_pas := 1 end
Event IL_out2 refines IL_out =̂ when il_tl = green ∧ b = 1

then (b, c := b− 1, c+ 1), (il_tl, il_pas := red, 1)
end

Event ML_tl_green =̂ when ml_tl = red ∧ a+ b < d ∧ c = 0 ∧ il_pass = 1
then (ml_tl, il_tl := green, red),ml_pass := 0 end

Event IL_tl_green =̂ when il_tl = red ∧ 0 < b ∧ a = 0 ∧ ml_pass = 1
then (ml_tl, il_tl := red, green), il_pass := 0 end

Event IL_in refines IL_in =̂ when a > 0 then a, b := a− 1, b+ 1 end
Event ML_in refines ML_in =̂ when c > 0 then c := c− 1 end

————————————————————————————————————

Figure 3.4: The first two refinements of the "Cars on the bridge" example (from
Abrial [94])

and il_pass are introduced: ml_pass = TRUE signifies that at least one car has
passed the bridge going to the island since the mainland traffic light last turned
green; similarly for il_pass = TRUE.

First, we start the learning process with ` = 3 (Case 1); for each of the three
models, the procedure is executed with initial values S0 = {ε} and W0 equal to
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M0 M1 M2

Figure 3.5: DFCAs for CarsOnBridge given ` = 3

(a) (b)

Figure 3.6: DFCAs for (a) M2 and ` = 6; and (b) the DFCA improvement after
providing a counterexample.
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the corresponding input alphabet plus the empty sequence; the resulted DFCAs
(plotted using our plug-in) are presented on the right hand side of Fig. 3.4 (for
simplicity, the sink states are not shown).

Suppose now that we want to improve the DFCA for M2 by increasing the
upper bound ` (Case 2 / Subcase 2). For ` = 6, we obtain the DFCA in Fig.
3.6(a), which has more states and transitions (and covers events like ML_in that
were not covered for ` = 3).

In order to illustrate the iterative DFCA construction (cf. Fig. 3.3), we provide
a counterexample path for the current DFCA associated to M2. For instance, the
following sequence of length 5:

w =ML_tl_green, ML_out1, ML_out2, IL_in, IL_in

is feasible in M2, but it is not accepted by the DFCA in Fig. 3.6(a). The new
DFCA taking into account the counterexample w (see the while-loop of Fig. 3.3)
is presented in Fig. 3.6(b). It can be observed that the path q0 → q2 → q3 →
q6 → q4 → q8 in the new DFCA corresponds to the path w in M2.

Naturally, finding a counterexample is the most problematic part of our ap-
proach and a model checker such as ProB can be of great assistance. There are
several possibilities to do this:

− interactively, using the experience of the human testers that have a good
understanding of the model: Testers can use the simulation and animation
capabilities of ProB to discover counterexamples, that are fed to the learn-
ing algorithm. Moreover, high-priority scenarios that the testers deem as
important can be introduced into the learning loop and the associated tests
will be covered by the DFCA.

− by testing language equivalence, using theW -method for bounded sequences
outlined in section 3.1.2: Recall that, given a DFCA model M of a system
and an upper bound `, this method generates a test set to check if the im-
plementation under test, modeled by an unknown automaton I , behaves as
defined by M for all sequences of length at most `. The test set has the
form Xk = SA[k + 1]W ∩ A[`], where S and W are a proper state cover
and a strong characterization set of M , respectively, and k is the difference
between the estimated maximum number of states of I and the number of
states of M . In our case, the model M corresponds to the current DFCA
M(S,W, T ) and the implementation under test to the Event-B model (more
precisely, an approximation of the Event-B model, which contains all set of
executable paths of length up to `). Now, the sets S and W in the observa-
tion table satisfy the definitions of a proper state cover and a strong charac-
terization set of M(S,W, T ), respectively. Thus, for k = 0, the test set X0
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is actually the set of sequences in the observation table, so, if the Event-B
model is known to have no more states than the current DFCA, this step is
already completed. Otherwise, testing the behavioral equivalence between
the current DFCA and the Event-B model corresponds to gradually increas-
ing k until a counterexample is found (a test case produces a different result
on the Event-B model compared to the DFCA) or we are satisfied that the
DFCA is correct. Note that the size of the test set is exponential in k and so
using the W -method for a large k may be expensive.

− by encoding the language equivalence problem into the ProB model checker:
For instance the complement of the DFCA is encoded into a CSP process
P and ProB will try to run the Event-B machine and P in parallel to find a
path that is accepted by Event-B but not by the DFCA. Note, however, that
this procedure might be computationally expensive.

From the three options above, in the current version of our implementation we
only consider the first one, in which the counterexample is manually provided
(which is in fact in the spirit of the original Angluin’s algorithm). This also fits
well with common practice, in which human knowledge is used to guide model
and test design.

Test data generation

In order to decide whether a given sequence s, ‖s‖ ≤ `, is accepted or not by
the DFCA (i.e., s ∈ L` or not), the procedure needs to check if s is a feasible
path through the Event-B model. This is achieved by effectively constructing (or
attempting to construct) test data to drive the given path. If the appropriate test
data has been found, then s ∈ L`; otherwise, the path is declared infeasible4 and
so s 6∈ L`. Therefore, deciding whether s ∈ L` or not reduces to finding test data
to execute the corresponding path of the Event-B model.

Then, all it remains to specify are the method(s) used to find test data to ex-
ecute a given path of an Event-B model. So far two such approaches have been
proposed and implemented. The first used symbolic execution and reduces this
problem to solving a set of constraints [131]. The second reduces the problem
to an optimization problem, which is then solved using search-based techniques
(genetic algorithms) [79]. Note that the test data generation problem may be com-
plex even for one path, when the guards are complex and the test data domain
are large. In particular, the set-theoretic nature of Event-B increases the search

4Note that here infeasible means only that our tools could not find test data within reasonable
time (e.g. 20 seconds for one path) and we stop searching, whereas in reality there might exists
such test data. However, since we are working with approximated models, this incompleteness
aspect is not very important.
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space because free set variables v that are subsets of a given carrier set V (i.e.
v ⊆ V ) can take exponentially many values, 2card(V ). Consequently, most of the
time taken by the execution of the procedure is spent on generating the actual test
data.

3.1.4 Test suite construction

When the process of constructing the DFCA is completed, a test suite for the
Event-B model has also been obtained; this is precisely the set of sequences in
the observation table returned by the procedure, X0 = (S ∪ SA)W ∩ A[`] (note
that the procedure returns the minimized S and W and so these are the used in
the definition of X0). The test sequences can be classified into positive (for which
T (x) = 1, which correspond to feasible paths in the Event-B model) and negative
(for which T (x) = 0). Naturally, test data can only be generated for feasible paths
and, as explained earlier, test data generation is implicitly included in the DFCA
construction procedure. Negative test sequences are also useful for testing the
system implementation since they describe erroneous scenarios, which the system
cannot perform in normal functioning.

Following [103], the constructed set will constitute a conformance test suite
for the Event-B model modulo the bound ` (the `-bounded behavior of the model).
Such a test is more powerful that a set of tests based on state or transition coverage
criteria since it covers all states and all transitions of the equivalent automaton
and also checks each state and the initial and destination states of each transition.
Conformance testing is especially relevant in the embedded systems domain.

Increasing `, longer and more complex tests are generated. However, very
complex or long test sequences are usually not the norm, so having the ability to
tune the length of the test case using ` is an advantage of our approach. Another
advantage is the fact that the method is interactive, so the tester can use its intuition
to provide relevant sequences to the algorithm to learn and thus more directly
influence the result of the test suite. This is in contrast to purely automatic test
generation techniques that are driven by coverage criteria, where the produced
tests may not be intuitive or may not cover existing standard testing scenarios in
the domain. Regarding coverage criteria, if a very specific coverage criteria is
sought (cf. [84]), our method can accommodate this to some extent in that the
training set of sequences for the learning algorithm can be chosen according to
the desired coverage. Moreover, if a simpler coverage criteria like event coverage
is desired, the obtained test suite can be reduced by choosing a smaller subset that
satisfies the requirement.
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Relation to Event-B refinement

Very often, model design is an iterative process, in which, at each step, the ex-
isting (more abstract) model is replaced by a more concretized model through
refinement. The incremental approach of L` allows us to reuse the learned model
and test suite of the abstract model to the next more concretized model (Case 2,
Subcase 3 from subsection 3.1.3), as explained below. Again, the approach is
presented in the context of Event-B, but the basic ideas can be extended to other
languages which provide model refinement as a way to handle complexity.

Suppose we have a refinement from AM (abstract model) to CM (concrete
model). In a refinement step, new events can be introduced and the existing events
can be made more concrete. Let A and A′ denote the sets of events of AM and
CM, respectively, and let E ⊆ A′ be the new events introduced in CM that do not
refine any abstract event. Every abstract event a ∈ A from AM will correspond
to a set (containing one or many concrete events) from CM. 5 Let us denote this
set ref (a), ref (a) ⊆ A′ \ E. Also, let ref (A) = {ref (a) | a ∈ A}. Suppose Smin

and Wmin are the (minimized) sets produced by the application of our procedure
on the abstract model AM. As these sets contain sequences of abstract events,
they need to be transformed before they can be reused in the construction of the
automaton corresponding to the concrete model CM. On the other hand, it can
be shown that only one of the two sets (Smin or Wmin) is sufficient to correctly
determine the corresponding DFCA model (the other set is reconstructed by the
algorithm). Furthermore, the set of all feasible paths of an Event-B model is
closed under prefixing and so, naturally, a path from AM is transformed into a
path from CM by gradually transforming its prefixes. Such a transformation is
natural in the case of S, which is prefix-closed, but is problematic for W , which
must be suffix-closed. For these reasons we choose to only transform the set Smin.
For W , we will use the same type of heuristic as for the case in which the DFCA
construction procedure is executed for the first time: W is initialized with the set
A′ of all events of CM (along with the empty sequence).

The transformation of Smin is given in pseudocode in Fig. 3.7; mapS denotes
the mapping between each sequence in Smin and the corresponding sequence in
the concrete model. Ultimately, the algorithm will return the prefix-closure of the
image of mapS , pref(Im(mapS)). Y denotes the set of sequences from Smin

that remain to be processed. Sequences are processed in increasing order of their
length, so, at any time, a (the) sequence of minimum length from Y is selected. As
Smin is prefix-closed, mapS(x) is obtained by extending the transformation of its
longest prefix s (x = sa, s ∈ A∗, a ∈ A). Two main cases can be distinguished.

5In general the correspondence may be many-to-many but in the vast majority of the models
we have encountered a one-to-many correspondence is sufficient.
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——————————————————————————-
Transformation of S
——————————————————————————-
Input: Smin and the restriction of T to Smin

mapS(ε) = ε
Y = Smin \ {ε}
While Y 6= ∅ do

Select x = sa, s ∈ A∗, a ∈ A, a seq. in Y of minimum length
s′ = mapS(s)
If T (x) = 1 then

found = find_next(s′, a, t)
If found then
mapS = mapS ⊕ (x, s′t)
Y = Y \ {x}

Else
If s = ε then

Return failure
Else

Y = Y ∪ (dom(mapS) ∩ {s}A[1])
dom(mapS) = dom(mapS) \ {s}A[1]

Else
mapS = mapS ⊕ (x, s′a′) for some a′ ∈ ref (a)
Y = Y \ {x}

Return SR
min = pref(Im(mapS))

——————————————————————————-

Figure 3.7: The transformation of S in the case of refinement

− If x is a feasible path of AM, then mapS(x) must also be a feasible path
of CM. This is obtained by extending s′ = mapS(s) with a sequence
t = e1 . . . eja

′, where e1, . . . , ej ∈ E, j ≤ k (k is a predefined upper
bound), and a′ ∈ ref (a). The function find_next(s′, a, t) searches for such
a t in increasing order of j; if found, the function will return TRUE, oth-
erwise FALSE. find_next may be called several times with the same input
parameters s and a′ during the execution of the algorithm. Each time, it
continues the search from where it left off, so each time a different solution
is produced. If find_next cannot find a (new) solution, the algorithm back-
tracks: it removes s 6= ε and all sequences which extend s from the domain
of mapS and adds them to Y . Consequently, the algorithm will resume by
processing s. If s = ε, the algorithm cannot backtrack any further; in this
case, it stops and reports failure.
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− If x is not feasible in AM then s′ can be extended with any a′ ∈ ref (a).
6 Note that Smin contains only one such sequence since the corresponding
automaton will have only one non-final (“sink”) state.

In refinement, an event a from AM is replaced by (one or more) events ref (a)
in CM, describing the system reactions in different circumstances. Furthermore,
the applications of the extra events may also condition the event operation and so
each application of a in AM is replaced by some sequence e1 . . . eja′ in CM, with
e1, . . . , ej ∈ E and a′ ∈ ref (a).

The new events from E cannot be indefinitely enabled [94] and, furthermore,
in practice it is reasonable to expect that an upper bound k on the number of
times they can be applied in the absence of an event from A′ \ E can be estab-
lished, and so j ≤ k; the upper bound k is then used in the definition of the
find_next function presented above. Thus, any feasible path a1 . . . an in the ab-
stract model can be mapped (not necessarily in an unique fashion) onto a feasible
path u1a′1u2a

′
2 . . . una

′
n in the concrete model, with a′i ∈ ref (ai) and ui ∈ E[k],

1 ≤ i ≤ n. This ensures that the transformation procedure will end successfully,
so every sequence in Smin is refined appropriately. Finally, we need to ensure that
SR
min is prefix-closed and so we take the prefix-closure of the refined sequences.

Note that the transformation procedure given in Fig. 3.7 is only guaranteed to
terminate successfully if every feasible path in AM has a corresponding feasible
path in CM. This condition is in the spirit of refinement and is satisfied by the vast
majority of the applications we have encountered. However, the algorithm can be
easily extended so that it terminates successfully even when not all sequences in
SR
min can be refined - for simplicity and due to its reduced practical value, this idea

is not pursued here.
Once the set Smin has been transformed, the DFCA construction procedure

can be executed for the concrete model CM with initial values S0 = SR
min and

W0 = {ε} ∪ A′. The upper bound `R used for the concrete model CM also needs
to be established. This will be set by the user, but, naturally, it will be greater than
or equal to the length of the longest sequence in SR

min plus one.
Naturally, the DFCA construction procedure can always be applied directly

on the concrete model, but the strategy presented here, which reuses the informa-
tion from the abstract model in the construction of the concrete model and of its
associated test set, presents some key advantages:

− There is a significant number of cases (60 percent of the models considered
in our experiments, see Table 3.3) for which the “reuse” strategy produces
richer DFCAs than those produced “from scratch“ (i.e. by the direct ap-
plication of the procedure on the concrete model); on the other hand, in

6Since the concrete guard is not weaker than the abstract one [94], a non-feasible path in AM
can only give rise to non-feasible paths in CM.
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no case in our experiments the “from scratch“ strategy produced a better
model. A richer model (with a larger state space) represents a better ap-
proximation of the real system and is essential for the effectiveness of the
resulting test cases. In order to obtain a more precise model, appropriate
counterexamples must be supplied (and the DFCA construction procedure
be run at least once more); this may add significant complexity to the test
generation process.

− Even if the “reuse” strategy does not directly produce improved DFCA
models, it is still preferable as it offers a way of incorporating the human
knowledge into the model at the appropriate level of abstraction. Let us con-
sider two Event-B models, AM (abstract) and CM (concrete), as above. It
is likely that the first DFCA for AM is not satisfactory, so a richer automa-
ton is obtained by supplying the construction procedure with appropriate
counterexamples. In the “reuse” strategy, these counterexamples are propa-
gated to the next level - they are implicitly included in the DFCA for CM.
On the other hand, when the DFCA for CM is produced from scratch, all
counterexamples must be produced at this level. Naturally, abstract models
are simpler than concrete models, so finding counterexamples (by human
intervention or automatically) for the abstract model is simpler.

3.1.5 Experimental results
In this subsection we provide the results of our experimentation on a comprehen-
sive benchmark of Event-B models. The implementation of our algorithms was
done in Java as an Eclipse plugin7 to Rodin platform (in its latest version 2.3). The
membership queries were implemented using the constraint-solving functionality
of ProB and a timeout of 20 seconds per query was imposed. We run ProB with
fixed internal parameters, although fine-tuning of ProB parameters may improve
results in certain cases. The experiments were conducted on a Windows 7 Profes-
sional 64-bit machine with an Intel Core i7 2.80GHz (8 CPUs) processor and 12
GB of RAM.

We used a broad range of models for experimentation, including systems from
the embedded systems, transportation and aerospace industries as well as aca-
demic and pedagogical Event-B models used in the literature. All the chosen 10
Event-B models are publicly available in the DEPLOY model repository8. Table
3.2 presents the models together with their complexity, i.e. number of refine-
ments, number of events for each refinement and number of variables for each

7Installation instructions and screenshots can be found at: http://wiki.event-b.org/
index.php/MBT_plugin

8http://deploy-eprints.ecs.soton.ac.uk
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refinement. For instance, the third model is our running example "CarsOnBridge"
(see Fig. 3.4). It has 3 refinements (M0/M1/M2/M3); each level (including the
initial machine M0) has 3, 5, 9, and 17 events, respectively; and 1, 3, 7, and 18
variables9, respectively. Note also that many of the models are rather complex,
e.g. TrainCtrller exhibits 8 levels of refinements and the last level has 43 events
and 35 variables.

Table 3.3 presents the results of our LearnDFCA procedure for the 10 models.
For each model we considered for exemplification several machines (at different
refinement levels) and different values of the bound `. For each combination,
we provide the number of states of the learned DFCA together with number of
associated conformance tests and the number of iterations needed to generate the
DFCA (i.e. how many times the outmost loop in Fig. 3.1 was executed). These
three dimensions are given for two strategies: first one, named "from scratch"
where information from the previous refinements is not used, and second, where
an information reuse is taken into account as proposed in previous Section 3.1.4.
As hoped, the "reuse" approach generated richer DFCAs in a smaller number of
iterations.

We note that the number of produced tests may seem high, but this is because
conformance testing is a strong form of testing heavily exercising the system.
However, more compact test suites can be obtained according to weaker cover-
age criteria. For instance, test suites for state and transition coverage are readily
available from the learning procedure, from the sets S and S ∪ SA, respectively.
Moreover, we have also implemented different test suite optimization algorithms
that produce significantly smaller test suites.

A practical heuristic: In our experiments we have found that, in most cases,
the states of the resulting automata can be distinguished by using only singleton
sequences. Since these are already contained in the initial W , in these case the
consistency checks performed by the DFCA are already successful and produce no
effect on the observation table (the set W is not expanded). Even when there are
states which can only be distinguished by sequences longer than 1, generallyW is
expanded much less frequently than S and so consistency checks would fail much
more rarely than closedness checks. This observation led to the following heuris-
tic: the procedure is applied first without consistency checks (at this step only S is
enlarged as a consequence of the failed closedness checks) and then, once more,
in which both consistency and closedness checks are performed. The heuristic
should considerably reduce the overall number of consistency checks. Since con-
sistency checks are time consuming operations (each such operation may require
a large number of membership queries), the heuristic should also reduce the ex-

9Variables might have an integer type, but also more complex types like sets, relations or partial
functions, which increase the complexity of the algorithms, especially the membership queries.
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ecution time. We have implemented both variants of the procedure (the original
version and one which uses the aforementioned heuristic). The experimental re-
sults shown in Table 3.4 indeed show that the heuristic produced improved results
in the majority of cases, but more significantly, that the improvements are signifi-
cant (over 50%) for large execution times (over 1,000 s).

Table 3.2: The complexity dimensions of the ten subjects (number of refinements,
number of events and number of variables)

Subject # of refin’s # of events per refin. # of variables per refin.

A2A 12 4/5/5/7/9/9/12/14/15/ 2/2/4/8/8/10/11/12/13/
16/16/17/17 15/16/18/17

BepiColombo 3 6/11/13/17 6/10/12/18

CarsOnBridge 3 3/5/9/17 1/3/7/18

CircArbiter 4 8/8/8/8/8 7/9/11/10/10

Choreography 1 7/13 7/17

MobileAgent 5 5/7/7/8/8/8 3/5/5/7/7/7

PressCtrller 7 5/13/17/17/21/21/21/29 2/6/8/8/10/10/11/15

ResponseCoP 3 5/14/17/17 3/4/5/6

SSFPilot 3 14/20/23/41 5/7/8/14

TrainCtrller 8 8/10/15/20/20/27/38/43/43 5/6/9/14/14/15/27/33/35

Benchmark: We provide a short description of the Event-B models in Table
3.2 including pointers where they can be retrieved:

1. A2A - http://deploy-eprints.ecs.soton.ac.uk/129/ - Busi-
ness domain: A model of the Order and Supply Chain A2A Communication
using a pattern approach from ETH Zurich.

2. BepiColombo - http://deploy-eprints.ecs.soton.ac.uk/72/
- Aerospace domain: A model of two communication modules in the em-
bedded software on a space craft (BepiColombo mission). The model was
constructed by researchers in Southampton [130] based on the feedback
from SSF.

3. CarsOnBridge - http://deploy-eprints.ecs.soton.ac.uk/112/
- Pedagogical example: Described in Section 3.1.3 and [94, Chapter 2].

4. CircArbiter - http://deploy-eprints.ecs.soton.ac.uk/117/
- Pedagogical example: Event-B model of the synchronous electronic cir-
cuits, see also [94, Ch. 8].
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Table 3.3: Results for "From scratch" and "Reuse" strategies (number of states,
number of test cases and number of iterations)

"From scratch" (i.e. no reuse) "Reuse"

Subject M ` # of states # of tests # of iter. # of states # of tests # of iter.

A2A

M2 11 5 79 5 5 79 2
M3 11 8 285 8 8 285 5
M4 11 8 445 8 8 445 2
M6 11 14 1518 14 14 1518 7

BepiColombo

M2 9 47 4798 47 51 5702 11
M3 12 126 24202 126 131 26896 65
M2 11 48 5098 48 53 6249 13
M3 15 131 26958 131 145 34115 75

CarsOnBridge
M1 13 5 79 5 5 79 4
M2 13 9 429 9 9 429 4
M3 13 38 7407 38 54 11402 39

CircArbiter M4 12 5 141 5 7 293 2

Choreography M0 13 5 120 5 5 120 5
M1 13 10 957 10 10 957 5

MobileAgent
M2 12 13 445 13 17 777 2
M3 12 25 1162 25 33 1964 18
M4 12 25 1162 25 33 1964 2

PressCtrller
M0 8 5 81 5 5 81 5
M1 8 43 4857 43 46 5628 41
M2 8 127 22017 127 136 26385 92

ResponseCoP

M0 3 4 41 4 4 41 4
M1 8 37 3230 37 43 5091 38
M0 4 5 51 5 5 51 5
M1 9 49 5767 49 65 9539 58

SSFPilot

M0 10 54 7541 54 54 7541 54
M1 10 96 20430 96 96 20430 95
M1 11 107 25370 107 107 25370 107

TrainCtrller

M5 13 12 3117 12 12 3117 2
M6 13 12 4437 12 12 4437 2
M7 13 18 9054 18 18 9054 15
M8 13 20 11203 20 20 11203 17

5. Choreography - see [80] - Business domain: A model of service choreogra-
phy for enterprise component communication.

6. MobileAgent - http://deploy-eprints.ecs.soton.ac.uk/120/
- Distributed systems domain: A model for distributed computing commu-
nication: a routing algorithm for sending messages to a mobile phone, see
also [94, Chapter 12].

7. PressCtrller - http://deploy-eprints.ecs.soton.ac.uk/113/
- Embedded control domain: A model of a mechanical press controller
adapted from a real system at INRST (Institut National de la Recherche
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Table 3.4: Comparison of execution times for the original and the proposed heuris-
tic algorithm (below, "time": execution time of the original learning algorithm,
"time_h": execution time of the heuristic algorithm in Section 3.5.3, "time_tr":
execution time of the transformation algorithm in Fig. 3.7)

"From scratch" (i.e. no reuse) "Reuse"

Subject M/` time time_h Red.% time time_h Red.% time_tr

A2A

M3/11 0.37 0.39 -4.59 0.36 0.35 2.75 0.17
M4/11 0.80 0.93 -16.35 0.90 0.91 -1.44 0.25
M6/11 5.92 6.36 -7.45 3.51 3.63 -3.27 3.15

BepiColombo

M2/10 29.85 25.15 15.75 38.22 32.31 15.48 2.84
M3/12 235.87 179.92 23.72 228.85 177.64 22.38 24.29
M2/11 30.42 25.97 14.65 40.32 35.04 13.10 2.81
M3/15 287.40 254.56 11.43 359.01 346.03 3.62 26.59

CarsOnBridge
M1/13 0.06 0.06 0.00 0.08 0.06 30.00 0.10
M2/13 0.90 0.87 2.90 0.81 0.74 8.74 0.38
M3/13 34.19 33.43 2.23 48.06 46.79 2.64 5.91

CircArbiter M3/12 0.33 0.32 2.71 0.81 0.81 0.00 0.26
M4/12 0.39 0.39 0.00 1.10 0.96 13.00 0.34

Choreography M0/13 0.41 0.28 32.44 0.36 0.26 28.09 0.00
M1/13 7.08 7.16 -1.10 6.06 6.14 -1.30 2.21

MobileAgent M2/12 1.25 1.44 -15.37 1.74 1.77 -1.61 0.80
M3/12 7.25 7.13 1.68 11.05 11.28 -2.12 1.70

PressCtrller
M0/8 0.03 0.03 0.00 0.03 0.04 -9.38 0.00
M1/8 5.32 5.17 2.84 5.85 5.68 2.82 0.61
M2/8 41.71 38.16 8.52 45.66 41.63 8.84 4.03

ResponseCoP

M0/3 0.02 0.02 0.00 0.05 0.02 47.83 0.00
M1/8 7.57 7.63 -0.79 16.75 12.69 24.24 2.28
M0/4 0.04 0.04 0.00 0.05 0.04 8.89 0.00
M1/9 15.93 15.64 1.81 25.10 27.49 -9.51 4.02

SSFPilot
M0/10 186.71 116.87 37.40 186.71 112.61 39.69 0.00
M1/10 5463.69 2371.34 56.60 5463.69 2596.46 52.48 0.71
M1/11 8435.40 3652.08 56.71 9505.11 3945.82 58.49 0.58

TrainCtrller

M5/13 31.57 33.83 -7.17 29.73 31.54 -6.07 1.38
M6/13 99.35 110.46 -11.18 100.37 104.75 -4.37 6.76
M7/13 394.86 451.11 -14.24 389.24 440.22 -13.10 6.78
M8/13 531.50 536.62 -0.96 530.00 526.55 0.65 6.78
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sur la Sécurité du Travail), see also [94, Chapter 3].

8. ResponseCoP - http://deploy-eprints.ecs.soton.ac.uk/301/
- Information flow domain: A model for analysis of information flow poli-
cies for Dynamic Virtual Organisations (DVOs), commonly referred to as
the Bronze/Silver/Gold structure that frequently arises in multi-agency re-
sponse to emergencies.

9. SSFPilot - http://deploy-eprints.ecs.soton.ac.uk/58/ -
Aerospace domain: A model of a pilot for a complex on-board satellite
mode-rich system: Attitude and Orbit Control System (AOCS).

10. TrainCtrller - http://deploy-eprints.ecs.soton.ac.uk/316/
- Automotive Domain: The model specifies a controller that detects the driv-
ing mode wished by the train driver. A large number of requirements are
taken into account, therefore a large number of variables and events are
needed.

3.1.6 Related work
The correspondence between conformance testing and automata learning is dis-
cussed, from a theoretical point of view, by Berg et al. [85], which shows how
results from one area can be transferred to the other. Such a correspondence is
also exploited in our method; in our case, however, the correspondence is be-
tween conformance testing for bounded sequences and cover automata learning.
Furthermore, here we propose an adaptive learning and test generation approach,
in which the results obtained for a previous (incomplete or inaccurate) model are
reused for the current system.

An adaptive approach to model development is proposed by Groce et al. [86],
but the emphasis here is on model checking, rather than test generation, as in our
approach. Furthermore, a DFA (not a DFCA) model of the system is built. Our
approach can gradually build an appropriate model by suitably setting the value
of the upper bound ` or through the Event-B refinement mechanism.

The use of automata learning techniques for test generation is also discussed
by Hagerer et al. [87] and Hungar et al. [88]. As above, both papers refer to
the case of unbounded sequences. Furthermore, in both papers the focus is on
language learning and test generation is only mentioned as an addendum: once the
model is constructed, it can be used as basis for automatic test generation. Hungar
et al. present a technique for optimizing complex system learning. Hagerer et
al. present a technique, called regular extrapolation, for model generation from
knowledge accumulated from different sources and expert knowledge. The final
model is only an approximation of the real system and so the test cases derived
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from it may not attain the desired level of coverage. Interestingly, testing is also
used to validate the obtained model and the authors state that “most errors show
up in short sequences”. This provides further support for our approach, which
considers bounded sequences.

Bounded model checking (based on SAT methods) [77] is also gaining pop-
ularity in the formal verification community, the general consensus being that it
works particularly well on large designs where bugs need to be searched at shal-
low to medium depths.

Dupont et al. [89] and Walkinshaw et al. [90] use automata inference tech-
niques to construct behavior models of software systems. However, there are a
number of key differences from our approach. Firstly, the learning techniques
used are essentially passive inference methods, in which a set of training data is
supplied to the algorithm for model construction. In order to construct an ac-
curate model, training sequences which satisfy an appropriate level of coverage
must be supplied. Therefore, these approaches rely on the existence of good test
sets, rather than assist in producing such sets. Secondly, the behavior of all (un-
bounded) sequences is considered. While the model produced by this approach
may be exact, it may be too complex and so the whole process may be too ex-
pensive to have a practical value. By appropriately setting the upper bound `,
our approach has potential to strike the right balance between accuracy and costs.
Naturally, at limit (i.e. for ` sufficiently large), our approach will also produce an
exact model of the system.

Grieskamp et al. [91] construct finite automata that under-approximate the
global state space of an ASM. They use an algorithm that combine several con-
crete states into abstract ones using logical formulas to distinguish the abstract
states. The obtained finite automaton is used for test generation. Using a similar
idea and extra information on logical dependences between Event-B guards, [92]
constructs an abstract over-approximation of the control flow graph of an Event-B
model. Compared to our approach based on incremental learning, both these last
approaches use a different approach relying on state merging and logical formulas
for distinguishability.

Finally, to the best our knowledge, this is the first attempt to use grammatical
inference techniques for Event-B models.

Technical appendices

Let A = {a1, . . . , an} be an ordered set, n > 0. Then the quasi-lexicographical
order on A∗, denoted <, is defined by: x < y if ‖x‖ < ‖y‖ or ‖x‖ = ‖y‖ and
x = zaiv, y = zaju, for some z, u, v ∈ A∗ and 1 ≤ i < j ≤ n. x ≤ y is used to
denote that x < y or x = y.

Let U ⊆ A∗ be a finite set and ` an integer that is greater than or equal to the
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length of the longest sequence(s) in U . Let S ⊆ A∗ and W ⊆ A∗ be the current
sets processed by LearnDFCA.

For s ∈ S ∪ SA, we define r(s) to be the minimum sequence t ∈ S such that
s ∼ t, where the minimum is taken according to the quasi-lexicographical order
on A∗. In particular, r(ε) = ε. Then we define Smin = {r(s)|s ∈ S}.

For every two dissimilar sequences s1, s2 ∈ S, we denote by d(s1, s2) the
minimum element (according to the quasi-lexicographical order) ofW that distin-
guishes between s1 and s2. Then we define Wmin as the set of all such sequences,
i.e. Wmin = {d(s1, s2) | s1, s2 ∈ S, s1 6∼` s2}.

Then the following result holds.

Theorem 3.1.1 Suppose that M(S,W, T ), the automaton returned by LearnD-
FCA, is a minimal DFCA of U w.r.t. `. Then the execution of LearnDFCA for
inputs S0 = Smin and W0 = Wmin will pass both the consistency and closedness
checks and the returned DFCAM(Smin,Wmin, Tmin) is isomorphic toM(S,W, T ).

Proof We prove by contradiction that the procedure passes the consistency check.
Otherwise, there exist w ∈ Wmin, s1, s2 ∈ S with ‖s1‖, ‖s2‖ ≤ `− ‖w‖ − 1 and
a ∈ A such that s1 ∼k s2, where k = max{‖s1‖, ‖s2‖}+‖w‖+1, and T (s1aw) 6=
T (s2aw). Thus aw distinguishes between s1 and s2, but s1 and s2 cannot be
distinguished by any element in Wmin of length ‖w‖+1. This contradicts the fact
that Wmin contains d(s1, s2).

Similarly, if the procedure fails the closedness check, then there exist s ∈
Smin, a ∈ A such that sa 6∼ t ∀t ∈ Smin with ‖t‖ ≤ ‖sa‖. On the other hand
r(sa) ∈ Smin and ‖r(sa)‖ ≤ ‖sa‖. This provides a contradiction, as required.

Since the state set of M(S,W, T ) is Smin, the fact that M(Smin,Wmin, Tmin)
and M(S,W, T ) are isomorphic follows directly from the definition of the DFCA
returned by LearnDFCA [106].

Moreover, let A be a finite alphabet, U ⊆ A∗ a finite set and ` an integer that
is greater than or equal to the length of the longest sequence(s) in U ; let I be a
minimal DFCA of U w.r.t. `. Then the following two results hold.

Theorem 3.1.2 If S0 ⊆ A∗ is a proper state cover of I , then LearnDFCA returns
a minimal DFCA of U w.r.t. ` for inputs S0 and W0 = {ε}.

Proof LetM(S,W, T ) be the DFCA returned by LearnDFCA. First we prove that
W is a strong characterization set of I . We provide a proof by contradiction. If we
assume otherwise, then there exist w = a1 . . . ai /∈ W with a1, . . . , ai ∈ A, and
q1, q2 states of I such that q1 and q2 are distinguishable by w but indistinguishable
byW∩A[i]. Since ε ∈ W , i ≥ 1. Let j, 1 ≤ j ≤ i, be the largest integer for which
aj . . . ai /∈ W . Then we choose one such w for which j has the minimum possible
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value and q1 and q2 as above. Let q′1 and q′2 be the states reached by a1 . . . aj−1
from q1 and q2 respectively. Then q′1 and q′2 are distinguishable by aj . . . ai. Fur-
thermore, q′1 and q′2 are indistinguishable by W ∩ A[‖i− j + 1‖]. (Assume there
exists z = bj . . . bi′ ∈ W with b1, . . . , bi′ ∈ A, i′ ≤ i, which distinguishes be-
tween q1 and q2. Then q1 and q2 are distinguishable by a1 . . . aj−1bj . . . bi′ but
indistinguishable by W ∩ A[i′]. This contradicts the minimality of j.) Let s1 ∈ S
and s2 ∈ S be sequences of minimum length which reach q1 and q2, respectively
(since S is a proper state cover, such sequences exist). Let w′ = aj+1 . . . ak,
s′1 = s1a1 . . . aj−1, s′2 = s2a1 . . . aj−1 and k = max{‖s1‖, ‖s2‖} + i + 1. Then
s′1 ∼k s

′
2 and T (s′1ajw

′) 6= T (s′2ajw
′). This provides a contradiction as the final

observation table must be consistent.
Since I and M(S,W, T ) have the same number of states (equal to the number

of elements of S0), the result follows from the W -method for bounded sequences.

Theorem 3.1.3 If W0 ⊆ A∗ is a strong characterization set of I , then LearnD-
FCA returns a minimal DFCA of U w.r.t. ` for inputs S0 = {ε} and W0.

Proof We prove by contradiction that S is a proper state cover of I . If we assume
otherwise, then there exist s = a1 . . . ai /∈ S with a1, . . . , ai ∈ A, i ≥ 1, and q
a state of I such that q is reached by s but cannot be reached by any sequence in
S ∩ A[i]. Let j, 1 ≤ j ≤ i, be the smallest integer for which a1 . . . aj /∈ S. Then
we choose one such s for which j has the minimum possible value and q as above.
Let q′ be the state reached by a1 . . . aj from the initial state of I . Then q′ cannot
be reached by any sequence in S ∩ A[j]. (If there exists z = b1 . . . bj′ ∈ S with
b1 . . . bj′ ∈ A, j′ ≤ j, which reaches q′ then q is reached by b1 . . . bj′aj+1 . . . ai
but unreachable by any sequence in S ∩ A[i]. This contradicts the minimality of
j.) Let s′ = a1 . . . aj−1. Since W is a strong characterization set of I , s′aj 6∼ t
∀t ∈ S with ‖t‖ ≤ ‖s′aj‖. This provides a contradiction. As above, the final
result follows from the W -method for bounded sequences.

3.1.7 Conclusions
In this section, we presented a novel approach of using model learning for testing
purposes and its application to the Event-B method. This is based on sound theo-
retical automata theory foundations and has an incremental and interactive nature
that makes it fit the testing practice requirements. The prototype implementa-
tion showed that the method works well for realistic models, of medium or even
fairly large size. As future plans, we want to further investigate the scalability
of our approach and implementation on even larger models. Moreover, we plan
to implement the language equivalence query as a means for interactively provid-
ing a counterexample (cf. end of Subsection 3.1.3), which is done manually in
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the current implementation. We will also implement different optimizations on
our prototype, especially on the membership queries which constitute the most
expensive part of the procedure. For instance, we can compute batches of the
membership queries in parallel (on a multi-core/multi-processor architecture) or
we can evaluate more sophisticated reductions, e.g. partial-order reductions by
exploiting the independence of different events. In the next section, we show how
we extend the model learning and test generation to decomposed Event-B models;
this is important for industry, where the complexity of the large specifications is
tackled not only by successive refinements but also by model decompositions.
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3.2 Model-learning and MBT for Event-B decom-
position

In the previous section, we proposed an iterative approach for test generation and
state model inference based on a variant of Angluin’s learning algorithm, which
integrates well with the notion of Event-B refinement. In this section, we extend
the method to work also with the mechanisms of Event-B decomposition. Two
types of decomposition, i.e. shared-events and shared-variables, are considered
and the generation of a global test suite from the local ones is proposed at the
end of the section. The implementation of the method is evaluated on publicly
available Event-B decomposed models.

3.2.1 Introduction

The main modeling approach in Event-B relies on the notion of refinement, i.e.,
the modeler starts with an abstract model which is iteratively enriched and con-
cretized by capturing more and more features of the system to be specified. Each
refinement step is accompanied by formal proofs for properties of interest for the
system. As the complexity of the model increases, so does the difficulty the proof
obligations and verification tasks. One powerful method to address this situa-
tion is to decompose a larger model into smaller sub-models which can be further
refined and analyzed independently [95, 96]. There are two main types of decom-
position: shared events style [97, 98] and shared variables style [99, 100]. In the
former, the communication and consistency between sub-models is realized via
shared events, while in the latter this is done via shared variables.

In this section, we extend the method of the previous section that integrates not
only the Event-B refinement mechanism, but also the different Event-B decompo-
sition styles. More precisely, for decomposition, we investigate the generation of
CAs (cover automata [75]) for the sub-models by reusing information via projec-
tions from the global model. Also vice-versa, for the recomposition operation we
can reuse the information from the CAs of the sub-models for the construction of
a CA for the global model. Conformance test suites are also generated alongside.
Finally, an integrated approach involving both refinements and (de)compositions
in an Event-B development chain is proposed.

The section is structured as follows. The next subsection presents prerequi-
sites from formal languages and automata theory. Subsection 3.2.3 shortly recalls
the previous work on automata learning for Event-B and Subsection 3.2.4 intro-
duces the extension of this work to Event-B decomposition and recomposition
operators. Subsection 3.2.5 provides experiments on publicly available Event-B
models, while Subsection 3.2.6 concludes the section.
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3.2.2 Preliminaries

In this subsection we provide theoretical prerequisites product automata, together
with their accepted languages.

Product automata and projections - general concepts. We now provide a cou-
ple of definitions and results for product automata and languages. This is a pre-
requisite for the setting of decomposed Event-B models that we present later on.
To simplify the presentation, we only consider the case the two automata, but the
definitions and the results hold also for more than two automata.

We start by describing formally the product of two automata synchronizing
on their common input symbols. First of all, since the two automata have differ-
ent input alphabets A1 and A2, their transition function is extended to the whole
set of symbols A = A1 ∪ A2 using the following definition. Given DFA M =
(B,Q, q0, F, h) and B ⊂ A we define the DFA ExtA(M) = (A,Q, q0, F, h

′) by:
for every q ∈ Q and a ∈ A, h′(q, a) = h(q, a) if a ∈ B and h′(q, a) = q if
a ∈ A \B.

When the two automata operate on the same input alphabet, their product can
be described in a traditional fashion, as follows:

Definition 3.2.1 Let M1 = (A,Q1, q01, F1, h1) and M2 = (A,Q2, q02, F2, h2)
be two DFAs. Then we define the DFA M1 × M2 = (A,Q, q0, F, h) by: Q =
Q1 × Q2, q0 = (q01, q02), F = F1 × F2 and for every q1 ∈ Q1, q2 ∈ Q2, a ∈ A,
h((q1, q2), a) = (h1(q1, a), h2(q2, a)).

Thus, for two DFAsM1 andM2 over alphabetsA1 andA2, we denote byM1 ‖
M2 := ExtA(M1)×ExtA(M2) the product automaton over alphabetA = A1∪A2

capturing the synchronization on common symbols of M1 and M2. This is similar
to the standard synchronization of labeled transition systems used in the literature
(see e.g. [107]).

The languages accepted by product automata are characterized by the so-
called product languages. For their definition, we first need the notion of pro-
jection. Given a sequence s ∈ A∗ and A1 ⊂ A, the projection of s on A1, denoted
by projA1

(s), is the sequence obtained from s by removing all symbols not in A1.
For a language L ⊆ A∗, projA1

(L) = {projA1
(s) | s ∈ L}. Now, we can define

the notion of product language:

Definition 3.2.2 Let A1 and A2 be two alphabets, not necessarily disjoint, and
A := A1 ∪ A2. Then, a language L ⊆ A∗ is called a product language (over A1

and A2) if and only if there exist two languages L1 ⊆ A∗1 and L2 ⊆ A∗2 such that

L = {w ∈ A∗ | projA1
(w) ∈ L1 and projA2

(w) ∈ L2}.
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Moreover, there exist also a useful result (see e.g. [108]) proving that a product
language is always the product of its projections, i.e. languages L1 and L2 in the
previous definition can be replaced by projA1

(L) and projA2
(L), respectively. Fi-

nally, the expected result relating the languages of product automata with product
languages says that:

Proposition 3.2.3 [108] The class of regular product languages coincides with
the class of languages accepted by products of DFAs.

Corollary 3.2.4 For a finite alphabet A := A1 ∪ A2, let L ⊆ A∗ be a regular
product language, and M1 and M2 be two DFAs for projA1

(L) and projA2
(L),

respectively. Then, L = LM1‖M2 .

Since any finite language is also a regular language, Corollary 3.2.4 holds also
when L is a finite product language. Therefore, we can easily derive:

Corollary 3.2.5 For a finite alphabet A := A1 ∪ A2, let U ⊆ A∗ be a finite
product language and ` a positive bound (larger than the size of any word in U ).
IfM1 andM2 are two DFCAs w.r.t. ` for projA1

(U) and projA2
(U), thenM1 ‖M2

is a DFCA w.r.t. ` for U .

3.2.3 Cover automata based learning and test generation
In this subsection we present the main elements of the approach proposed in [104],
that can incrementally construct a series of finite state approximations and corre-
sponding test suites for a series of Event-B refined models. Before that, we need
to provide the basic elements of Event-B.

A short introduction to Event-B.
An event is an element consisting of a set of local parameters, a guard and an

action code. An event evt has the following general form:

evt =̂ any t where G(t, v) then S(v, t) end. (3.1)

Above, t is a set of local parameters, v is a set of global variables appearing in
the event, G is a predicate over t and v, called the guard, and S(v, t) represents a
substitution. If the guard of an event is false, the event cannot occur and is called
disabled. The substitution S modifies the values of the global variables in the set
v. It can use the old values from v and the parameters from t. For example, an
event that adds a number i smaller than 9 to a global variable n, in case n is greater
than 15, is modeled as:

increment =̂ any i where i ∈ N ∧ i < 9 ∧ n > 15 then n := n+ i end.
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Given an Event-B model, a test case can be defined as a sequence of events.
This can be either positive, if it corresponds to a feasible (i.e. executable) path
through the Event-B model, or negative, otherwise. The feasibility of a test case
implies the existence of appropriate test data for the events, i.e. an appropriate ini-
tialization of the global variables and suitable values for the local parameters,such
that all the guards of the events in the sequence are satisfied. Furthermore, a test
suite is by definition a collection of test cases.

Given an Event-B model Z having its set of events denoted by E, we can
define the language of Z to be the set of feasible sequences over E, i.e.

L(Z) := {w ∈ E∗ | w is feasible in Z}.

Note that L(Z) is not regular in general, since one can easily simulate a two-
counter machine in Event-B, so the formalism is Turing-complete [81]. However,
we can naturally obtain a regular subset by considering only a finite subset of
L(Z), namely the sequences of length up to a bound `, i.e. L(Z, `) := L(Z)∩E[`].

Finally, the refinement in Event-B is a mechanism of constructing a series of
more abstract models before reaching a very detailed one. For instance, in a refine-
ment step, new variables and new events can be introduced and the existing events
can be made more concrete with the assumption (that must be formally proved)
that the concrete guard is not weaker than the abstract one (i.e. the concrete guard
logically implies the abstract one) [94].

Incremental model learning based on cover automata. In [104] we present an
automata learning and test generation procedure for Event-B: given an Event-B
model Z and a positive bound `, we produce a DFCA M for U := L(Z, `) and an
associated test suite. The procedure can be iteratively used for a series of model
refinements.

The core of the procedure is based on a modification of Angluin’s learning
algorithm [106] that is specialized to finite languages, and that is more efficient
than the original Angluin’s algorithm, called L∗, for regular languages [74].

In a similar but not trivial way, in [106] we extend Angluin’s work by propos-
ing an algorithm, called L`, for learning a DFCA. Given an unknown finite set
U ⊆ A∗ and a known integer ` that is greater than or equal to the length of the
longest sequence(s) in U , the L` algorithm will construct a minimal DFCA of
U w.r.t. `. Analogously to L∗, the L` algorithm uses membership and language
equivalence queries to find the automaton in polynomial time.

The L` algorithm constructs two sets: S, a non-empty, prefix-closed set of
sequences and W , a non-empty, suffix-closed set of sequences. Additionally, S
will not contain sequences longer than ` and W will not contain sequences longer
than `− 1, i.e. S ⊆ A[`] and W ⊆ A[`− 1]. The algorithm keeps an observation
table, which is a mapping T from a set of finite sequences to {0, 1,−1}. The
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sequences in the table are formed by concatenating each sequence of length at
most ` from the set S ∪ SA with each sequence from the set W . Thus, the table
can be represented by a two-dimensional array with rows labeled by elements
of (S ∪ SA) ∩ A[`] and columns labeled by elements of W . The function T :
((S ∪ SA) ∩ A[`])W −→ {0, 1,−1} is defined by T (u) = 1 if u ∈ U , T (u) = 0
if u ∈ A[`] \ U and T (u) = −1 if u /∈ A[`]. The values 0 and 1, respectively,
are used to indicate whether a sequence is contained in U or not. However, only
sequences of length less than or equal to ` are of interest. For the others, an extra
value, −1, is used. Similar to the L∗ algorithm, two properties of the observation
table are defined: consistency and closedness.

The algorithm starts with S = W = {ε}. It periodically checks the consis-
tency and closedness properties and extends the table accordingly using member-
ship queries. When both conditions are met, the DFA M(S,W, T ) corresponding
to the table is constructed and it is checked whether the language L accepted by
M(S,W, T ) satisfies L∩A[`] = U . If this language query fails, a counterexample
t is produced, the table is expanded to include t and all its prefixes and the consis-
tency and closedness checks are performed once more. Eventually, the language
query will succeed and the algorithm will return a minimal DFCA of U w.r.t. `.

The iterative procedure of the algorithm for Event-B is shortly presented be-
low. The technical details can be found in [104]. The main idea is that we evolve
the observation table based on previous versions of it, by reusing existing informa-
tion whenever possible. In particular, for the Event-B refinement, the observation
tables of the refined model is not generated from scratch, but from the table of the
abstract model that is refined, so unlike the original L` algorithm, the procedure
does not start with empty S, W and T , but with some initial values S0, W0 and
T0, which reflect the current knowledge about the DFCA model. An important
observation is that, for efficiency reasons, in the recalculation of the observation
table only a part of the previous information is sufficient, viz. Smin ⊆ S and
Wmin ⊆ W , which satisfy certain properties: they are a proper state cover and
strong characterization set, respectively (see [104] for definitions).

For the first execution of the procedure, the initial sets S0 and W0 are based
on an initial estimation of the states of the model. In the worst case (when no
initial estimation is available), we take S0 = {ε}, W0 = {ε} ∪ E, where E is the
set of events. Note that the alphabet A from L` above is now the set E. When
the procedure has been applied at least once, previous information can be reused.
If model is not totally accurate and needs to be improved, we can distinguish the
different reasons for that:

− Case 1: the Event-B model has been modified or augmented due to changes
in the requirements.

− Case 2: the Event-B model has not been changed but the associated DFCA
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is deemed to be insufficient for testing purposes. In this case, the upper
bound ` is increased according to the existing testing needs and the proce-
dure is executed once more for the new value of `.

− Case 3: the existing Event-B model has been refined and extra detail has
been added (using the Event-B refinement). In this case, information from
the abstract model can be reused in the computation of the refined model.

A test suite TS can be derived from the observation table as follows:

TS := {t ∈ E∗ | t ∈ ((S ∪ SE) ∩ E[`])W such that T (t) = 1}. (3.2)

Note that we only take positive test cases into account in TS. However, we could
also use the existing information about infeasible sequences, i.e. T(t)=0, to gen-
erate negative tests, if such a testing requirement exists. Moreover, in (3.2) we
usually take S and W to be the sets Smin and Wmin mentioned above. Further-
more, the test cases from TS are provided with the test data that prove their feasi-
bility. The test data is obtained during the construction of the observation table T ,
because the membership queries, i.e. feasibility checks, are implemented using a
dedicated set-based constraint solver for Event-B, which also returns the values
of variables and local parameters for a given feasible sequence. As discussed in
[104], TS will constitute a conformance test suite for the Event-B model mod-
ulo the bound ` (the `-bounded behavior of the model). Such a test suite is more
powerful than test suite based on simple state or transition coverage criteria since
it covers all states and all transitions of the equivalent automaton and also checks
each state and the initial and destination states of each transition. Conformance
testing is especially relevant in the embedded systems domain.

3.2.4 Model learning for Event-B decomposition
Event-B decomposition styles

There are two main decomposition styles in Event-B: shared-events [97, 98] and
shared-variables [99, 100]. Other variants like atomicity decomposition [97, 130]
or modularization [109, 96] also exist, but we do not address them now for the
following reasons. Since the atomicity decomposition is in fact a special case
of refinement, our method in [104] works for it out-of-the-box. On the other
hand, modularization defines a different approach to decomposition that reuses a
sub-model in several other models using interface specifications, so we leave its
investigation to the future (moreover, there is some yet to be solved integration
issues between the modularization plug-in and the Event-B constraint solver that
we use).
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Figure 3.8: The shared event vs. shared variable decomposition styles

Shared events decomposition. In the case of shared events decomposition, an
Event-B model is decomposed into several sub-models such that all its events and
variables are distributed over the local models. As the name suggests, the local
sets of events may have common events (shared events). However, the local sets
of variables are disjoint, i.e. the partition of the variables will determine the struc-
ture of the decomposition. The left hand side of Fig. 3.8 presents a minimalistic
example of shared events decomposition. At the top, we have a global model
Z with three events {evA, evB, evC} and two global variables {var1, var2}. The
lines between the events and variables suggests the dependencies between them,
e.g evA−var1 means that var1 appears in the guard or/and action of evA. Assume
that the modeler chose to distribute the variables over two sub-models: the first
one, denoted Z1, takes over var1, and the second, Z2, takes over var2. Then, the
events are distributed to Z1 and Z2 according to the distribution of the variables,
so Z1 has evA and evB as events (because they depend on var1) and similarly, Z2

has evB and evC as events. In this case, evB is a shared event for Z1 and Z2.
However, there is a technical issue to be solved for evB; the fact that evB de-

pends on both var1 and var2, while the local models contain only one of the vari-
ables. This means that the local events corresponding to evB, denoted in Fig. 3.8
by evB_1 and evB_2, will only be restricted versions of evB that only depend on
var1 and var2, respectively. So, for the decomposition to be possible, evB should
have such a form that "separates" the use of var1 and var2 in its guards and ac-
tions. This is a task for the modeler that should design the Event-B specification
in this way as a preparation step for decomposition (refinement may be use in
previous modeling steps to achieve this goal). Below, we present evB, evB_1, and
evB_2 using the general form of an event in (3.1):

evB =̂ any t, t1, t2 where G1(t, t1, var1) ∧G1(t, t2, var2)
then S1(var1, t, t1);S2(var2, t, t2) end.

evB_1 =̂ any t, t1 where G1(t, t1, var1) then S1(var1, t, t1) end.
evB_2 =̂ any t, t2 where G2(t, t2, var2) then S2(var2, t, t2) end.

Above, we see that evB has a set of local parameters t, t1, t2, a guard that is the
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conjunction of two guards using var1 and var2 separately, and also an action that
can be split into two actions that do not mix the two global variables. The local
events will then only use the parts of the guards and actions that refer to their cor-
responding global variable. Without going into details, it is also important to ob-
serve the existence of the common local parameter t, which can be used for pass-
ing data between evB_1 and evB_2. This makes the shared event decomposition
suitable for specifying distributed systems communicating via message-passing
[130]. Finally, we mention also the fact that the decomposition mechanism is cor-
rect in the sense of Event-B refinement [94], by proving specific proof obligations
(e.g. deadlock freedom) and putting restrictions on the subsequent refinements of
the shared events in the local sub-models.

The decomposition operation induces the inverse operation of composition, for
which a dedicated Rodin plug-in exists [110]. It takes a input two models Z1 and
Z2 that may have events with the same name and constructs a composed model
Z (look at Fig. 3.8 bottom-up). Z is obtained by putting together the variables
and events Z1 and Z2, taking care that the local shared events are merged by
concatenating their guards and actions following the same scheme as for evB_1,
evB_2, and evB above.

Shared variables decomposition. Let us also touch upon the shared variables
decomposition, using the exemplification on the right of Fig. 3.8. In this case,
we partition the set of events and then distribute the variables. If we partition the
events of Z ′ into {evA, evB} and {evC}, due to the variables dependences, the
sub-models Z ′1 and Z ′2 have the variables {var1, var2} and {var2}, so they share
variable var2. However, since sub-models have in fact two copies of the shared
variable, they need to learn the changes made to the shared variable in the other
sub-models. This is implemented adding so-called external events. For instance,
in addition to its "native" event evC , Z ′2 will also include an external event evB_e

that is a restricted version of evB, that only simulates its effect on var2. Note that
the shared variables decomposition is suitable for the specification and verification
of parallel programs [100].

Learning and test generation for shared events decomposition

In the rest of the section, we will present our approach only for the shared events
decomposition. We can do this without loss of generality based on the observation
that, for our purposes, the shared variables decomposition can be reduced to the
shared event decomposition as follows. Suppose Z ′ is decomposed using shared
variables into Z ′1 and Z ′2 and the decomposition is based on the partition of set of
events E of Z ′ into E1 and E2 Assume that E11 ⊆ E1 is the set of external events
for Z1 and E21 ⊆ E2 the set of external events for Z2. Then, if we duplicate the
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shared variables and consider each of the two Event-B components to work on
its own copy (the definition of the shared variables ensures that they process the
two copies identically), the shared variables decomposition can be transformed
into a shared events decomposition of Z ′ into sub-models with set of events E ′1 =
E1 ∪ E21 and E ′2 = E2 ∪ E12, respectively.

Before we proceed, we establish a formal relation between Event-B decompo-
sition and the theory of product languages from Subsection 3.2.2. The proofs of
the theoretical results can be found in the Appendix.

Lemma 3.2.6 Let Z be an Event-B model, which is decomposed into Z1 and Z2.
Then, for any w sequence of events in Z, w is feasible if and only if, proj1(w) and
proj2(w) are both feasible in Z1 and Z2, respectively.

Proof We assume a shared event type of decomposition, because the shared vari-
able decomposition can be reduced to this case as mentioned at the beginning of
Section 3.2.4. Moreover, suppose that set of global variables of Z, denoted by V ,
is partitioned into V1 and V2 in the Z1 and Z2 components.

For the direct implication, if w = e1 . . . en is feasible, there exists an initializa-
tion of variables and choice of the local parameters of the events such that all the
guards of e1 to en are true. The property of the events occurring in proj1(w) is that
they only operate on the variables from V1. Choosing the same initialization of
variables in V1 and the local parameters as in the execution of w, it is easy to see
that the guards of the events of proj1(w) are also true and so proj1(w) is feasible.
The argument is similar for the second projection proj2(w).

The inverse implication is also simple, although there is a subtle observation to
be made at the end of the proof. Provided that proj1(w) and proj2(w) are feasible,
we want to show that w is feasible. Since V1 and V2 form a partition of V , we
can choose an initialization of the variables in V based on the initializations of V1
and V2. Moreover, we know that there exist values of the local variables to satisfy
the guards of proj1(w) and proj2(w). With these values, it can be proved that w is
also feasible. This takes into account the fact that for a shared events e, its partial
versions e_1 and e_2 in the components are merged by combining the guards with
the "and"-operator and concatenating the actions.

In the inverse implication, the move from the local feasible projections to the
global feasible sequence involves also initialization of the local parameters. A
special case is that of common local parameters for shared events (recall the pre-
sentation from Subsection 3.2.4). More precisely, we need to make sure that there
are no local initializations of a common parameter in the sub-models that are in-
consistent. E.g. an initialization of t = 1 in one component and t = 2 in the other
component, would lead to a deadlock in the shared event. However, by design, the
definition of local parameters excludes this situation as discussed in [98]. There,
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the authors specify certain non-blocking usage patterns for the common parame-
ters like input-output data passing.

Finally, as expected, the above proof can be generalized from two to more
components. Note also that in Lemma 3.2.6, the projection operator uses in the
case of shared events, their local versions (see evB, evB_1, and evB_2 in Fig. 3.8).
2

Using Lemma 3.2.6 and Definition 3.2.2 for product languages, we can show
that:

Proposition 3.2.7 Let Z be an Event-B model, which can be decomposed into Z1

and Z2. Then, the language of Z, L(Z), is a product language overE := E1∪E2,
where E1 are the events of Z1 and E2 are the events of Z2.

Proof We prove using Lemma 3.2.6 that L(Z) is a product language when choos-
ing L1 and L2 in the definition of product language to be L(Z1) and L(Z2), re-
spectively. 2

As an immediate corollary, the result hold also when we impose a bound `, i.e.
L(Z, `) is also a product language, so Corollary 3.2.5 can be applied.

Next we now show how our learning and test generation method can be applied
to the two operations of decomposition and composition.

Approach for decomposition. Let Z be an Event-B model and E the set of
events of Z. We assume that Z is decomposed, using the shared events scheme,
into models Z1 and Z2 with event sets E1 and E2, respectively. Given a bound `,
our goal is to obtain DFCAs and associated test suites for Z, Z1, and Z2. Although
one can apply the method in Subsection 3.2.3 directly and separately on Z, Z1,
and Z2, we would like to improve the process by reusing information.

We assume that we have a DFCA M and a test suite TS for Z. Then, the
DFCA learning procedure forZ1 will not start with S1 = {ε}, as when no previous
model is available, but with the set S1 = {proj1(s) | s ∈ Smin}, where Smin is the
proper state cover derived from the DFCA model of Z. The set W1 is initialized
with E1 ∪{ε}. Similarly for Z2. We could also to start with a projection of the set
W obtained for Z (i.e. W1 = {proj1(s) | s ∈ Wmin}), but, this may not improve
performance since W usually contains only singletons [104].

With this input, the learning procedure may not produce a correct DFCA M1

for Z1 from the beginning and more iterations may be needed. The reason is
that, even though Lemma 3.2.6 ensures that a feasible path in Z is projected to a
feasible path in Z1, the projection S1 may not be rich enough to cover all the states
of M1. This can be understood from the fact that, in general, there is no concrete
relation between the sizes of a minimal DFA of a regular language L ⊆ A∗ and
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of the minimal DFA of its projection on a sub-alphabet A′ ⊂ A. Thus, the size
of a minimal DFA accepting the projection projA′(L) can be smaller, equal to, or
even exponentially larger than the size of the minimal DFA accepting L [111].
The same holds even when L is a finite language. Moreover, in the specific case
of Event-B decomposition, the DFCAs of the sub-models may be larger not only
because of the effects of the projections just mentioned, but also because there
might exist more feasible paths in the projections due to the weakened guards of
the shared events, with the effect that the DFCAs for the local sub-models have
more states. However, our experiments showed that our choice of S1 will speed
up the learning procedure, generating richer DFCAs in less time compared to the
procedure of learning an DFCA for Z1 from scratch.

Approach for composition. The inverse operation to decomposition is that of
composition [110, 98]. Given two models Z1 and Z2 with event sets E1 and E2,
one can construct an Event-B model Z that synchronizes on the shared events.

There are several ways in which we can construct a global DFCA model and/or
a test suite for Z from Z1 and Z2 or their DFCAs:

1. Construct Z and then apply the techniques of [104] to derive a DFCA and a
test suite associated to Z. In this case, there is no reuse of information from
Z1 and Z2.

2. Construct the two DFCAs M1 and M2 for Z1 and Z2 and then construct
the product M1 ‖ M2, minimize it and denote it Mmin. Then, construct a
test suite TS from the minimal DFCA Mmin using a W-method adapted to
bounded testing [103]. For every test sequence s for Mmin, the test data
generation process will check if proj1(s) and proj2(s) are test sequences for
M1 and M2, respectively. If this is the case, the test data values for proj1(s)
and proj2(s) will be reused. This variant is sound due to Corollary 3.2.5.

3. Construct only a global test suite TS from the local test suites TS1 and TS2

by composing individually the test cases, i.e. TS := {t ∈ E∗ | proj1(t) ∈
TS1 and proj2(t) ∈ TS2}. (Optionally, apply a symmetry reduction by
only keeping traces in TS that are not equivalent modulo swapping of inde-
pendent events.)

4. Construct directly a DFCA for the composed model Z without applying the
composition of Z1 and Z2, nor the product of M1 and M2. This is done by
applying a learning algorithm for global sequences of events (of length up
to `) and answering the global membership queries via answering the local
membership queries for the projections (this is sound because of Lemma
3.2.6).
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Figure 3.9: A sample of decomposition flow

The first two proposals above are correct, i.e. the obtained automata are DF-
CAs with respect to L(Z, `), while the last two are heuristics that in our experi-
ments produced reasonable results, even though they are in general only approxi-
mations.

Approach for integrated process. Finally, let us sketch how the above proposals
can be integrated in our incremental, refinement based, model learning and test
generation strategy presented in [104].

Figure 3.9 describes a typical incremental development in Event-B involving
decomposition. There, RZ, which is a refinement of Z, is decomposed into RZ1

and RZ2, which are further refined into RRZ1 and RRZ2. For this example, our
approach will first construct a DFCA model for Z, which will be reused in the
construction of a DFCA for RZ. RZ will constitute the basis for the construction
of the DFCAs for RZ1 and RZ2 starting the learning procedure with the projec-
tions as previously explained. The DFCAs for RZ1 and RZ2 will, in turn, be
reused in the construction of the final models, for RRZ1 and RRZ2. These latter
models are used to produce a DFCA model and tests for the overall system by one
of the methods proposed for the composition operator.

3.2.5 Experiments

We implemented the methods for decomposition presented in this section, ex-
tending our Rodin plug-in that previously only addressed refinement [105]. The
experiments were conducted on a Windows 7 Professional 64-bit machine with an
Intel Core i7 2.80GHz (8 CPUs) processor and 12 GB of RAM.

For the benchmark, we investigated all the publicly available Event-B mod-
els involving decomposition from the DEPLOY repository10. From the total of
eight found models, we could not use two of them because they involved some
advanced data types that were not yet supported by the Event-B constraint solver
deployed for the membership queries. From the rest of six models, the first three
use shared events and the last three use shared variables. Their dimensions are
presented in Table 3.5. The first column gives their name together with a refer-
ence. The second column gives the evolution of the models by the operations of

10http://deploy-eprints.ecs.soton.ac.uk
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refinement and decomposition in a similar fashion to Fig. 3.9. The ’/’ symbol
represents a refinement step, while ’{’ depicts a decomposition. For instance, for
BepiColombo_SE, there are three refinement steps m0/m1/m2/m3, followed by
a decomposition of m3 into m4 and m5; then, m4 is further refined to m6 and m7.
The third and forth columns provide the corresponding numbers of events and
global variables for the models. For example, BepiColombo starts at m0 with 6
events and 5 global variables, increases its complexity via refinement tom3 which
exhibits 17 events and 16 variables. and ends up having 23 events and 20 variables
for the last refinement m7 of one of the sub-models.

Note that the search space in BepiColombo case can be very large. E.g. the
third refinement m3 of BepiColombo has 17 events, so for ` := 8 the number of
possible sequences or tests of length up to 8 is 178 which is almost equal to 7 ·109.
Moreover, to this complexity we have to add the computation time for test data
for the generated test cases. The constraint solver performing this task need to
address a search space implied by 16 global variables of type Set and 17 local
parameters appearing in the events.

In our experiments, we checked the feasibility of our approach and the scal-
ability of the implementation, by performing the steps for the integrated process
at the end of the previous subsection, i.e. we incrementally construct DFCAs for
the refinement and decomposition from abstract model to more concrete levels,
combining the (integration) tests at the end using a method for composition. Due
to space constraints, we provide the tables with experimental results in the Ap-
pendix. However, we report a successful generation of DFCAs and test suites
within reasonable time (max. 6 minutes) for sufficiently high values of ` (up to
13 for smaller models). Moreover, the experiments confirmed that the reuse im-
proves the quality of the generated DFCAs (i.e. more states compared to learning
from scratch) and reduces the computation time in many cases.

3.2.6 Conclusions
In this section, we presented a method for automata learning and test generation
that can be applied along the specification process of Event-B. We focused on the
mechanism of decomposition, because this is an important way of dealing with
the large models that may occur in industrial practice. Our approach makes use
of the advantages of cover automata and its soundness is based on the theory of
product languages. In the future, we will continue to improve the prototype e.g. by
a better (UI) integration with decomposition and composition plug-ins [95, 110]
and extend its use to the modularization plug-in [109]. We will also investigate
the quality of the generated test suites using mutation testing techniques.

In the end, we mention a couple of related papers, even though they solve
different problems in different settings. First, we are not aware of any work that
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Table 3.5: The dimensions of 6 models from DEPLOY repository (development
process, no. of events and no. of variables)

Subject Development process No. events (m0/m1...) No. variables (m0/m1...)

BepiColombo_SE from [130] m0/m1/m2/m3

{
m4/m6/m7
m5

6/11/13/17

{
15/19/23
10

5/10/12/16

{
12/16/20
4

UpdateMaster_SE from [96] m0/m1/m2

{
m3/m5/m7
m4/m6/m8

5/6/6

{
4/5/5
4/6/6

4/5/5

{
4/6/6
3/8/8

Monitor_SE from [96] m0/m1/m2

{
m3/m6/m9
m4/m7/m10
m5/m8/m11

7/7/7

{
7/5/5
4/6/6
4/6/6

4/6/6

{
2/4/4
2/3/3
2/3/3

Monitor_SV from [96] m0/m1/m2

{
m3/m6/m9
m4/m7
m5/m8/m10

7/11/11

{
9/11/11
10/10
7/7/9

4/4/4

{
2/5/5
3/4
3/4/6

QResponse_SV m0/m1/m2/m3/m4

{
m5
m6
m7

2/3/4/5/5

{
3
5
3

2/3/5/7/9

{
4
7
4

FindP_SV from [100] m0

{
m1/m3/m4/m5
m2

6

{
4/5/6/6
4

5

{
3/4/5/6
3

generates test cases for Event-B decomposed models, see e.g. [112] and the ref-
erences therein. An idea of using model projections combined with automata
learning for black-box testing of components is presented in [113]. Our relation
between learning and conformance test suite is similar to the one presented in [85].
Learning is also used for the generation of communicating automata [114, 115]
and for compositional verification of system components [107].
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Table 3.6: Side-by-side results for the "Reuse Information" and "No Reuse" strate-
gies for refinement decomposition. We give information on: |DFCA| – the num-
ber of states of the DFCA, |TS| – the number of test cases, and the execution
times in seconds. Note that the "reuse" method generates richer DFCAs for Bepi-
Colombo_SE and QResponse_SV (and same sizes for the rest) and has better
running times in 60% of the lines below.

"Reuse Information" "No Reuse"

Subject Z ` |DFCA| |TS| time |DFCA| |TS| time

BepiColombo_SE

m0 3 5 9 0.05 5 9 0.07
m1 4 10 28 1.24 10 28 0.82
m2 4 11 36 2.07 11 36 1.67
m3 5 19 65 10.79 19 65 9.14
m4 5 105 1,966 19.16 103 1,891 22.12
m5 5 28 367 3.26 25 318 2.79
m6 6 358 7,635 267.37 351 7,294 292.92
m7 6 471 10,039 387.53 465 9,687 837.87

UpdateMaster_SE

m0 12 5 5 0.06 5 5 0.06
m1 12 5 7 0.14 5 7 0.10
m2 12 5 7 0.28 5 7 0.11
m3 12 4 6 0.02 4 6 0.03
m4 12 3 4 0.01 3 4 0.01
m5 12 5 7 0.16 5 7 0.08
m6 12 5 7 0.17 5 7 0.09
m7 12 6 7 0.20 6 7 0.17
m8 12 6 7 0.19 6 7 0.19

Monitor_SE
m0 11 4 9 0.10 4 9 0.06
m1 11 5 11 0.33 5 11 0.12
m2 11 5 11 0.02 5 11 0.15
m3 11 5 11 0.00 5 11 0.15
m4 11 4 6 0.00 4 6 0.03
m5 11 3 4 0.01 3 4 0.03

Monitor_SV

m2 12 13 44 0.22 13 44 1.33
m3 12 13 34 0.04 13 34 0.9
m4 12 13 39 0.00 13 39 1.10
m5 12 5 7 0.00 5 7 0.12
m6 12 13 34 0.20 13 34 1.45
m7 12 13 34 0.08 13 34 1.30
m8 12 13 39 0.10 13 39 1.26
m9 12 5 7 0.02 5 7 0.12
m10 12 5 7 0.05 5 7 0.21

QResponse_SV m1 13 4 6 0.09 4 6 0.02
m2 13 6 10 0.21 6 10 0.07
m3 13 9 18 0.49 9 18 0.25
m4 13 9 18 0.26 9 18 0.34
m5 13 5 4 0.01 3 3 0.05
m6 13 11 33 0.18 7 15 0.11
m7 13 3 2 0.01 3 2 0.01

FindP_SV
m0 6 5 15 0.15 5 15 0.16
m1 6 3 5 0.01 3 5 0.02
m2 6 3 5 0.01 3 5 0.04
m3 6 6 34 35.10 6 34 0.22
m4 6 6 61 117.60 6 61 45.55
m5 6 6 30 0.52 6 30 0.34
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Table 3.7: The number of generated test suites by the heuristics at the end of
Subection 3.2.4, i.e (3) the test suite TSs obtained from the synchronization of
local test suites, and (4) the test suite TSh by the heuristic of constructing a direct
DFCA by answering global membership queries via local ones. The times were
reasonable: under 2 seconds for all except TSi of BepiColombo_SE where 18
minutes were needed to compute the 3 millions test cases (these large number is
obtain because TSs is obtain from the synchronization of large local test suites:
10,039 for m7 and 367 for m5 – see previous table). The values of ` were those
used also in Table 3.6.

Subject Machines |TSs| |TSh|

BepiColombo_SE m7||m5 3,097,890 220

UpdateMaster_SE m7||m8 37 9

Monitor_SE m3||m4||m5 145 11

Monitor_SV m9||m7||m10 4,527 38

QResponse_SV m5||m6||m7 40 18

FindP_SV m5||m2 135 24
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3.3 Meta-heuristic methods for test data generation
for Event-B

3.3.1 Introduction

The ProB tool [131] has a good control of the state space, being able to explore it,
visualize it and verify various properties using model-checking algorithms. Such
algorithms can be used to explore the state space of Event-B models using certain
coverage criteria (e.g. event coverage) and thus generating test cases along the
traversal. Moreover, the input data that trigger the events provides the test data
associated with the test cases. Such an approach using explicit model-checking
has been applied to models from the business application area by SAP [80]. The
algorithms perform well for models with data with a small finite range. However,
in case of variables with a large range (e.g. integers), the known state space explo-
sion problem creates difficulties, since the model checker explores the state space
by enumerating the many possible values of the variables.

This section addresses a slightly different, but related, problem. Given a (po-
tentially feasible) path in the Event-B model, we use meta-heuristic search algo-
rithms (more precisely, genetic algorithms) to generate input data that trigger the
execution of the path. This is a very important issue of MBT since, for models
with large state spaces, paths with restrictive triggering conditions (e.g. com-
posed conditions involving one or more = operators) are difficult to attain us-
ing the model checking approach described above. A similar problem has been
addressed by recent work on search-based testing for Extended Finite State Ma-
chines (EFSMs) [139, 136, 149]. However, there are a number of issues that differ-
entiate search-based testing on Event-B models from these EFSM approaches as
described our position paper [146] like implicit state space, non-numerical types,
non-determinism and hierarchical models. In this section, we start addressing
some of these issues, especially the non-numerical types.

The main contributions of this section are enumerated below:

− Since the data structures used by Event-B models are predominantly set-
based rather than numerical, Tracey-like [147] fitness functions for such
data types are newly defined. These fitness functions are used to guide the
search for the solutions in large state spaces.

− Furthermore, the encoding of non-numerical types into a chromosome is
investigated. As Event-B models may use a mixture of numerical and non-
numerical types, the encoding has to accommodate also such a possibility.

− The proposed search-based testing approach for Event-B is applied on a
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number of industry-inspired case studies. The experiments show that the ap-
proach performs better in general compared to random testing approaches.

The section is structured as follows. We start with a couple of representative
Event-B examples in Subection 3.3.2. Then we present the proposed test gen-
eration framework based on search-based techniques using genetic algorithms in
Subsection 3.3.3. The experiments are explained in Subsection 3.3.4 and the con-
clusions are drawn in Subsection 3.3.5.

3.3.2 Case studies
In Section 3.5.3 we run the experiments on a benchmark of 5 Event-B models. The
models are not industrial ones, but are inspired by industrial examples. We have
been in contact with partners in the DEPLOY project that are interested in test
generation from Event-B models, especially SAP, which is an industrial partner
from the business software area. We have discussed a couple of MBT require-
ments together with a couple of sample models. For the benchmark, we made
model variations such that we cover different guard and variable types.

We describe 2 out of the 5 Event-B models that we used for the benchmarks.
The events of the first one contain numerical parameters, while the events of the
second model focus on set parameters. The presentation of each model starts with
a short description, followed by the types of the global variables (defined in the
context of the Event-B model). Then, the events of the Event-B machines are
listed together with their parameters. The guards and actions associated to each
event are presented in a separate table.

Numerical-based model: Bank Account. The first example models a simple
bank account system. The system allows the user to deposit money in the account
or to withdraw money from it. The bank pays interest and charges fees. Depend-
ing on the current balance, a deposit can be in four states: overdraft, empty, silver
and gold. Thus, the Event-B variables are: balance ∈ Z, transaction ∈ BOOL
and state ∈ STATES={overdraft,empty,silver,gold}. The machine events, whose
guards and actions are given in Table 3.8, are the following:

E1. Initialization, that initializes the bank account

E2. Deposit, having the numerical parameters amount1 and amount2

E3. Withdraw, having the numerical parameters amount1 and amount2

E4. ValidateOverdraft

E5. ValidateEmpty
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Table 3.8: Guards and actions of Bank Account events
Ev Guards Actions

E1: TRUE balance := 0, state := empty
transaction := FALSE

E2: amount1 + amount2 > 200 ∧ balance := balance + amount1 +
amount2

amount1 ∈ N ∧ amount2 ∈ N transaction := TRUE

E3: balance > 0 ∧ amount1 + amount2 <
1000 ∧

balance := balance − amount1 −
amount2

balance−amount1−amount2 >−100 ∧ transaction := TRUE
amount1 ∈ N ∧ amount2 ∈ Nt

E4: balance < 0 ∧ balance > −100 state := overdraft

E5: balance = 0 state := empty

E6: balance > 0 ∧ balance < 1000 state := silver

E7: balance ≥ 1000 state := gold

E8: balance > 1500 ∧ balance := balance+ value
value ≤ 50 ∧ value > 0 ∧ value ∈ N

E9: fee > 0 ∧ fee < 50 ∧ fee ∈ N ∧ balance := balance− fee
transaction = TRUE transaction := FALSE

E6. ValidateSilver

E7. ValidateGold

E8. PayInterest, having the numerical parameter value

E9. ChargeFee, having the numerical parameter fee.

Set-based model: Basket of Items. Here we model a basket of items. The system
allows the user to add items, to remove items and to pick items from the basket.
The system checks if the basket is empty or full or can make a special check.
The global variables are: items ∈ P(ITEMS), buffer ∈ P(ITEMS), isEmpty ∈
BOOL, isFull ∈ BOOL, CAPACITY ∈ N, and count ∈ N with the invariants
count ≥ 0 ∧ count ≤ CAPACITY and count = card(items), where ITEMS =
{it1, it2, . . . , it20}. The Event-B events, whose guards and actions are given in
Table 3.9, are the following:

E1. Initialization, that initializes the basket of items

E2. PickItems, with the set parameter its
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Table 3.9: Guards and actions of Basket of Items events
Ev Guards Actions

E1: TRUE items := ∅, buffer := ∅, count := 0
CAPACITY := card(ITEMS)
isEmpty := TRUE, isFull := FALSE

E2: its ⊆ ITEMS buffer := its

E3: buffer ⊆ ITEMS ∧ card(buffer) > 5 ∧ items := items ∪ buffer
card(buffer) + count ≤ CAPACITY count := card(items ∪ buffer)

isEmpty := FALSE

E4: buffer ⊆ items ∧ card(buffer) > 3 ∧ items := items \ buffer
count− card(buffer) ≥ 0 count := card(items \ buffer)

E5: items = ∅ ∧ count = 0 isEmpty := TRUE

E6: {it1, it20} ⊆ items ∧ card(items) <
6

buffer:=items

E7: count = CAPACITY isFull := TRUE
items := ∅, count := 0

E3. AddItems

E4. RemoveItems

E5. ValidateEmpty

E6. CheckSpecial

E7. ValidateFull.

Mixed types model: numerical and set parameters. This third example an arti-
ficially created model that allows us to experiment with different types of events.
The global variables are: setA ∈ P(A), setB ∈ P(B), value ∈ N, sizeA ∈ N,
sizeB ∈ N, with the invariants: sizeA = card(setA) and sizeB = card(setB),
found ∈ BOOL and full ∈ BOOL. The events, whose guards and actions are
given in Table 3.10, are the following:

E1. Initialization

E2. SearchInA, with the set parameter s1

E3. ValidateFull
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E4. SearchInB, with the set parameter s1

E5. Increase, with the set parameters s1, s2 and the numerical parameters v1, v2

E6. AFullBEmpty

E7. BFullAEmpty

E8. UpdateAll, with the set parameters s1, s2 and the numerical parameter v1.

Table 3.10: Guards and actions of mixed model events
Ev Guards Actions

E1: TRUE setA := ∅, sizeA := 0
setB := ∅, sizeB := 0
value := 0, found := FALSE, full := FALSE

E2: s1 ⊆ setA ∧ card(s1) = 2 ∧ a1 ∈ s1 ∧ found := TRUE
s1 ∈ P(A)

E3: sizeA = card(A) ∧ sizeB = card(B) ∧ full := TRUE
value ≥ 100

E4: s1 ⊆ setB∧card(s1) = 2∧s1 ∈ P(B) ∧ found := TRUE
{b1, b2} ⊆ setB

E5: s1 ⊆ A ∧ s2 ⊆ B ∧ v1− v2 < 10 ∧ setA := setA ∪ s1, sizeA := card(setA ∪
s1)

v1 ∈ N ∧ v2 ∈ N setB := setB ∪ s2, sizeB := card(setB ∪
s2)
value := value+ v1 + v2

E6: sizeA = card(A) ∧ sizeB = 0 full := TRUE

E7: sizeA = 0∧sizeB = card(B)∧value >
0

found := TRUE

E8: s1 ⊆ A ∧ s2 ⊆ B ∧ setA := s1, sizeA := card(s1)
v1 ∈ N setB := s2, sizeB := card(s2)

value := v1

3.3.3 Test data generation using genetic algorithms
Before describing our test generation approach, let us establish the problem to be
solved. First, let us note that Event-B specifications are event-based rather than
state-based models. Formally, these are abstract state machines [135] in which
the (implicit) states are given by the (global) values of the variables on which the
events operate. Each event is given by a triplet consisting of (1) the parameters
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(local variables) used by the event, (2) the guards which constrain the event appli-
cation (the guards may involve both local and global variables) and (3) the actions
of event, which may change the values of the global variables. The events produce
the transitions between states: the guards establish the valid source state(s) of the
transition while the actions produce the target state(s). In general, the application
of an event depends on the values of the parameters it receives. If we want to
execute a path (sequence of events) through the model, we will need to find ap-
propriate parameter values for each event in the sequence (i.e. which satisfy the
corresponding guards). This is the problem we will solve using a genetic algo-
rithm. Naturally, the prerequisite is that a set of paths, which satisfies the given
test requirement has already been found.

In general, this requirement is expressed as a level of coverage of the model.
Various levels of coverage for finite state machines exist in the literature [134, 148]
and some can be adapted to Event-B models without the need to transform the
model into an explicit state machine (for large systems this transformation may be
impractical). For example, transition coverage for a finite state machine requires
every transition to be triggered at least once. Similarly, for Event-B models, event
coverage will involve the execution of every event at least once. This type of
coverage can be generalized by requiring that each feasible sequence of events of
a given length k is executed at least once. Obviously, in order to decide if a path is
feasible or not it may be necessary to effectively find test data (parameter values)
which triggers it. Consequently, the potentially feasible paths can be selected first
by deleting paths which contain obvious contradictory constraints (e.g. both C
and ¬C) and then the test data generation algorithm is applied to each such path.
Other types of coverage may also be defined but this beyond the scope of this
section.

In this section, we assume that we have a set of paths (that cover, for instance,
all events of the model). For each path of the given set, we seek appropriate test
data, i.e. event parameters which enable the events in the path. It may be possible
that the test data for the selected path has not been found, either because of the
complexity of the guard constraints or simply because the path is infeasible; if this
is the case, a new path is selected. Note that the section does not address the issue
of path selection, but only the test generation for the chosen path(s).

Below we present the theoretical instruments based on genetic algorithms for
the above problem. First, Subsection 3.3.3 provides the background on genetic
algorithms. Then, the Subsections 3.3.3 and 3.3.3 describe the main ingredients
of the approach, i.e. the encoding of the sought solutions into chromosomes and
the fitness function that guides the search into the solution space, respectively.

Note that among the different meta-heuristic algorithms, for convenience, in
this section we have chosen to use the class of genetic algorithms [143], because
they are widely used in search-based testing approaches and have good tooling
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support. However, we plan in the future to experiment with other types of algo-
rithms like simulated annealing or particle swarm optimization.

Genetic algorithms

Genetic algorithms (GAs) [143] are a particular class of evolutionary algorithms,
that use techniques inspired from biology, such as selection, recombination (cross-
over) and mutation. GAs are used for problems which cannot be solved using
traditional techniques and for which an exhaustive search of the solution space is
impractical. In particular, the application of GAs to the difficult problem of test
data generation recently received an increased attention from the testing research
community [141, 140].

GAs basic approach is to encode a population of potential solutions on some
data structures, called chromosomes (or individuals) and applying recombination
and mutation operators to these structures. A high-level description of a genetic
algorithm [140, 143] is given in Fig. 3.10. The fitness (or objective) function
assigns a score (called fitness) to each chromosome in the current population.
The fitness of a chromosome depends on how close that chromosome is to the
solution of the problem. Throughout this section, the fitness is considered to be
positive and finding a solution corresponds to minimizing the fitness function, i.e.
a solution will be a chromosome with fitness 0. The algorithm terminates when
some stopping criterion has been met, for example when a solution is found, or
when the number of generations has reached the maximum allowed limit.

Various mechanisms for selecting the individuals to be used to create off-
spring, based on their fitness, have been devised [137]. GA researchers have ex-
perimented with mechanisms such as sigma scaling, elitism, Boltzmann selection,
tournament, rank and steady-state selection [143].

After the selection step, recombination takes place to form the next generation
from parents and offspring. The mutation operator is then applied. These two
operations, crossover and mutation, depend on the type of encoding used and so
they are discussed in more detail in the next subsection.

Chromosome encodings

Consider a path event1 . . . eventn in the Event-B model. A chromosome (possible
solution) is a list of values, x = (x1, . . . , xm) for the event parameters of the path
events (in the order they appear). More formally, if pi1, . . . , piki are the parameters
of eventi,1 ≤ i ≤ n, then x represents a list of values for parameters p11 . . . pnkn .
Naturally, m = k1 + · · · + kn can differ from the number n of events in the
sequence. If the values x satisfy all guards and, consequently, trigger the path,
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Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select P ′ from P according to selection mechanism
Recombine parents from P ′ to form new offspring
Construct P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Figure 3.10: Genetic Algorithm

then x is a solution for the given path. For numerical data, the chromosomes are
integer-encoded, each gene representing one parameter.

Consider, for example, the path E2 E8 E9 E3 E7 from the Bank Account
example presented earlier (technically, any path of a model starts with the special
event Initialization (E1), but for simplicity when we mention the events of a path
we skip E1). There are five events in the path: E2 (Deposit), which receives
amount1 and amount2 as parameters, E8 (PayInterest), with parameter value,
E9 (ChargeFee), with parameter fee, E3 (Withdraw), with parameters amount1
and amount2 and E7 (ValidateGold), with no parameters. Since all 6 parameters
have numerical types, a chromosome for the above path will be a list of 6 integers.

An additional problem occurs when non-numerical types are involved since
such values will have to be encoded into the chromosome. The applications we
have considered use enumeration types as well as types derived from these using
traditional set operators (∪, \,×). For a k-valued type T = {v1, . . . , vk}, a set
parameter S which is a subset of T , i.e. S ⊆ T , is represented by a bitmap of
length k, which has 1 on the ith position in the bitmap if vi ∈ S, and 0 other-
wise. Then, a chromosome corresponding to parameters p1 . . . pm will be a list of
values x1 . . . xm, in which each value is encoded as appropriate. The applications
we have considered use both numerical and non-numerical types and so some val-
ues in the chromosome are represented by simple integers whereas other values
are encoded as bitmaps. Once we generated a population of chromosomes, the
operations of crossover and mutation are applied as described below.

Crossover. For mixed chromosomes (with both binary and integer genes)
and binary-only chromosomes, a single-point crossover is used. This randomly
chooses a locus and exchanges the subsequences before and after that locus be-
tween two chromosomes to create two new offspring. For example, the strings
00000000 and 11111111 could be crossed over at the third locus to produce the
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two offspring 00011111 and 11100000. The crossover is applied to individuals
selected at random, with a probability (rate) pc. Depending on this rate, the next
generation will contain the parents or the offspring.

For integer chromosomes, we used a heuristic real value crossover, inspired
from [142], that showed to be the most efficient type of crossover for our problem.
This uses the fitness of the individual for determining the direction of the search.
For parents x = (x1, . . . , xm), y = (y1, . . . , ym), x fitter than y, one offspring z =
(z1, ..., zm) is generated, with zi being the integer-rounded value of α·(xi−yi)+xi,
α ∈ (0, 1). Heuristic real value and single-point crossovers can be combined.

Mutation is used to introduce variation in the population by randomly chang-
ing genes in the chromosome. Mutation can occur at each bit position in a string
with some probability pm, usually very small [143]. For binary genes, the muta-
tion operator randomly flips some bits in a chromosome. For example, the string
00000100 could be mutated in its second position to yield 01000100. For integer
genes, the gene value is replaced by another integer value that is randomly chosen
from the same interval.

Fitness function

The algorithm evaluates a candidate solution by executing each event with the
values encoded in the chromosome’s genes until the guard of the current event is
not satisfied. The fitter individuals are the ones which enable more events from
the given path. They are rewarded with a lower fitness value. The fitness function
is calculated using a formula widely used in the search-based testing literature
[141, 139], using two components. The first evaluates how close a chromosome is
to executing the given path, by counting the events executed. The second measures
how close is the first unsatisfied guard predicate to being true.

fitness := approach_level + normalized_branch_level

The first component, approach (approximation) level is similar a metric in evo-
lutionary structural test data generation [141]. This is calculated by m − 1 − n,
where m is the length of the path to be executed and n is the number of events
successfully executed until the first unsatisfied guard on the path, as in Fig. 3.11.

A fitness function formed only from the approach level has many plateaux
(i.e. for each value 0, 1, . . . ,m− 1) and it would not offer enough guidance to the
search. Consequently, the second component, called branch level, was introduced.
This computes, for the place where the actual path diverges from the required one,
how close was the guard predicate to being true.

For numeric types, the branch level can be derived from the guards predicates
using Tracey’s objective functions as shown in Table 3.11 [147, 140]. The branch
level is then mapped onto the interval [0,1) or normalized.
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S1

eventm 

[guardm]

Guard not satisfied

approach_level := 0

branch_level := obj(guard
m)

Sm+1SmS2

Guard not satisfied

approach_level := m-1

branch_level := obj(guard
1)

Guard not satisfied

approach_level := m-2

branch_level := obj(guard
2)

S3

event1
[guard1]

event2
[guard2]

Figure 3.11: Calculating the fitness function

Table 3.11: Tracey’s objective functions for relational predicates and logical con-
nectives. The value K, K > 0, refers to a constant which is always added if the
term is not true.

Relational predicate
Objective function obj

or logical connective

a = b if abs(a− b) = 0 then 0 else abs(a− b) +K
a 6= b if abs(a− b) 6= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) +K
a ≤ b if a− b ≤ 0 then 0 else (a− b) +K
a > b if b− a < 0 then 0 else (b− a) +K
a ≥ b if b− a ≤ 0 then 0 else (b− a) +K

Boolean if TRUE then 0 else K
a ∧ b obj(a) + obj(b)
a ∨ b min(obj(a), obj(b))
a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))
¬a Negation is moved inwards and propagated over a

We extended the calculation of the branch level to applications which involve
set theory based constraints as described below. The applications considered use
basic types that can be mapped onto either an interval ([p..q], 0 ≤ p < q,) or an
enumeration of non-negative integers ({p1, . . . , pn}, n ≥ 1, pi ≥ 0, 1 ≤ i ≤ n).
Furthermore, the derived types use the ∪, ∩, \ and × set operators. Then the
objective function for the a ∈ A and a /∈ A predicates can be derived using the
transformations given at the top of Table 3.12. The formulae are then extended
for the ⊆ and = set operators, as shown at the bottom of Table 3.12.
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Table 3.12: The extension of Tracey’s objective functions to set operators

Predicate involving ∈ for basic
Objective function obj

or derived sets

a ∈ [p, q] obj((a ≥ p) ∧ (a ≤ q))
a /∈ [p, q] obj((a < p) ∨ (a > q))
a ∈ {p1, . . . , pn} obj((a = p1) ∨ · · · ∨ (a = pn))
a /∈ {p1, . . . , pn} obj((a 6= p1) ∧ · · · ∧ (a 6= pn))

a ∈ A ∪B obj((a ∈ A) ∨ (a ∈ B))
a ∈ A ∩B obj((a ∈ A) ∧ (a ∈ B))
a ∈ A \B obj((a ∈ A) ∧ (a /∈ B))
(a, b) ∈ (A,B) obj((a ∈ A) ∧ (b ∈ B))

Predicates for ⊆ and = operators Objective function obj

[p, q] ⊆ A obj(∧qi=p(i ∈ A))
{p1, . . . , pn} ⊆ A obj((p1 ∈ A) ∧ · · · ∧ (pn ∈ A))
[p, q] 6⊆ A obj(∨qi=p(i /∈ A))
{p1, . . . , pn} 6⊆ A obj((p1 /∈ A) ∨ · · · ∨ (pn /∈ A))
A = B obj((A ⊆ B) ∧ (B ⊆ A))
A 6= B obj((A 6⊆ B) ∨ (B 6⊆ A))
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3.3.4 Experiments

We have implemented our approach as a plugin for the Eclipse-based Rodin plat-
form for Event-B. The plugin is designed to automatically generate test data for
given paths in the Event-B model. It can generate test data, i.e. the input param-
eters for the events on the given path, employing the fitness function described
in Section 3.3.3. The execution of the events (including the initialization) was
performed using the Event-B model simulation of the ProB plugin [131].

For the benchmark of 5 models mentioned in Section 3.3.2, we have consid-
ered a set of 18 random paths likely to be feasible, which covered all the events
from the models. The paths length varied between 2 and 5 events (without count-
ing the initialization event). The number of parameters on each path varied be-
tween: (a) 1 and 7 for numerical models; (b) 1 and 2 non-numerical parameters,
such as x ∈ P(ITEMS) for set examples; (c) 2−4 set parameters and 2−3 numer-
ical parameters for the mixed model. The codification used was: integer-valued
for numerical parameters (the integer range was fixed to 2000) and bitmap for set
parameters.

As recommended in [133], a search algorithm (GA in this case) should be
compared with random search in order to check that the algorithm is not simply
successful because the search problem is easy. Therefore, we tried to generate test
data for the 18 selected paths mentioned above, denoted by P1 − P18, using the
two methods: search-based testing with genetic algorithms (GA) and random test-
ing (RT). For each path and each test generation method, 30 runs were performed
(this number was also recommended in [133]). A run is considered successful
if it can produce input test data that can trigger the whole path, or equivalently,
the fitness function associated has the value 0. The run ends when a solution was
found or when the maximum number of generations was reached.

Using genetic algorithms, the amount of time needed to obtain test data for
a path, i.e. the actual values of the parameters which trigger the path, varied
between 1 second (for very simple paths, where the solution could be found from
the first generation) and 60 seconds (for complex paths).

The genetic algorithm framework used for experimentation was the open source
Java Genetic Algorithms Package (JGAP) [138]. The maximum number of gener-
ations for the genetic algorithm was set to 100 and the population size to 20. The
selection operator employed was BestChromosomesSelector, an elitist operator,
the mutation rate was pm = 1/10 and the crossover was single-point (for non-
numerical parameters) or heuristic crossover (for numerical ones), as presented in
Section 3.3.3.

For random testing, the same library was used: instead of applying recombi-
nation or mutation, the population was randomly generated at each step, ensur-
ing this way an equal treatment, i.e. an equal number of generations (or fitness
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function evaluations) for both methods, GA and RT. For each run, the generation
when the solution was found was recorded and Table 3.13 presents the summariz-
ing data: the success rate for each method (percent of successful runs from the 30
ones considered) and other descriptive statistics, e.g. the average (mean) number
of generations, the median and the standard deviation.

Statistical tests should be realized to support the comparison of GA and RT
runs. In our experiments we have used two statistical tests: the parametric t-test
and the non-parametric Mann-Whitney U-test. The null hypothesis (H0) is thus
formulated as follows: There is no difference in efficiency (the number of gener-
ations needed to find a solution) between GA and RT. The alternative hypothesis
(Ha) follows: there is a difference between the two approaches, GA and RT. The
two tests measure different aspects: the t-test measures the difference in mean
values (the null hypothesis is H0 : µ1 = µ2), whereas the Mann-Whitney U-test
measures their difference in medians (H ′0 : θ1 = θ2), i.e. whether the observa-
tions in one data sample are more likely to be larger than observations in the other
sample.

The test results and the p-values obtained are given in Table 3.13. In the
columns t-test and U-test, the sign ‘+’ stands for rejecting the null hypothesis
(consequently, there is a statistically significant difference between GA and RT
results), while the ‘−’ indicates that the null hypothesis cannot be rejected at the
significance level considered, α = 0.01. The p-value computed by the statistical
test is also provided, excepting the case when it can not be computed, e.g. when
both approaches were able to find a solution from the first generation for all the
runs (paths P16, P17), where ‘†’ stands for not computed.

Some standardized effect size measures were also used and they are given
in the last two columns: the Vargha and Delaney’s A statistic, the Cohen’s D
coefficient. The Vargha and Delaney’s A statistic [133] is a performance measure,
used to quantify the probability that GA yield ‘better values’ than RT. In our case,
‘better values’ means lower number of generations needed to obtain a solution.

The Vargha and Delaney’s statistics is given in the column ‘A’. For simple
paths, where RT and GA provide the solution in the same number of generations,
the effect size is 0.5. For more complex paths, a value of 0.82 means that we
would obtain better results in 82% of the time with GA (they guide the search
to success in a lower number of generations). It is worth noting that GA clearly
outperformed RT for 14 out of 18 paths considered, and the difference in terms of
success rate, average (or median) number of generations was significant.

The last column of Table 3.13 presents the Cohen’s D coefficient, which is
computed as the absolute difference between two means, divided by a pooled
standard deviation of the data [133, 145]. According to [145], Cohen has proposed
the following ‘D values’ as criteria for identifying the magnitude of an effect size:
a) small effect size: D ∈ (0.2, 0.5), b) medium effect size D ∈ [0.5, 0.8), c) large
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Table 3.13: Success rates, results of the statistical tests and effect size measures

Path Meth. Success Avg. Median Std. t-test U-test A Drate gen. dev. p-val p-val

P1 GA 100.0% 18.2 12.0 18.8 + + 1.00 5.85P1 RT 3.3% 99.0 100.0 5.3 < 0.001 < 0.001

P2 GA 100.0% 14.9 11.0 12.5 + + 1.00 6.45P2 RT 3.3% 97.6 100.0 13.1 < 0.001 < 0.001

P3 GA 96.7% 22.7 14.5 19.8 + + 0.98 4.61P3 RT 10.0% 96.9 100.0 11.1 < 0.001 < 0.001

P4 GA 100.0% 12.4 8.0 11.6 + + 0.82 1.17P4 RT 96.7% 35.0 32.5 24.8 < 0.001 < 0.001

P5 GA 66.7% 53.3 44.5 38.7 + + 0.83 1.71P5 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P6 GA 100.0% 23.5 21.0 9.2 + + 1.00 11.73P6 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P7 GA 100.0% 12.7 12.0 4.5 + + 1.00 16.72P7 RT 6.7% 98.5 100.0 5.7 < 0.001 < 0.001

P8 GA 100.0% 16.9 17.0 4.4 + + 1.00 26.59P8 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P9 GA 100.0% 13.7 13.0 2.4 + + 1.00 12.46P9 RT 3.3% 98.3 100.0 9.3 < 0.001 < 0.001

P10 GA 100.0% 30.9 31.5 6.3 + + 1.00 15.51P10 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P11 GA 96.7% 20.0 13.0 22.6 + + 0.98 4.64P11 RT 3.3% 98.6 100.0 7.9 < 0.001 < 0.001

P12 GA 100.0% 13.5 13.0 2.8 + + 1.00 43.66P12 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P13 GA 100.0% 11.9 11.5 2.2 + + 1.00 56.56P13 RT 0.0% 100.0 100.0 0.0 < 0.001 < 0.001

P14 GA 100.0% 1.3 1.0 1.6 − − 0.47 0.29P14 RT 100.0% 1.0 1.0 0.0 0.28 0.49

P15 GA 100.0% 1.0 1.0 0.0 − − 0.50 †P15 RT 100.0% 1.0 1.0 0.0 † 1.00

P16 GA 100.0% 1.0 1.0 0.0 − − 0.50 †P16 RT 100.0% 1.0 1.0 0.0 † 1.00

P17 GA 90.0% 16.9 5.5 29.9 + + 0.91 1.79P17 RT 53.3% 72.2 83.5 31.7 < 0.001 < 0.001

P18 GA 100.0% 1.8 1.0 2.4 − − 0.53 0.17P18 RT 100.0% 1.5 1.0 0.8 0.53 0.63
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effect size D ∈ [0.8,∞). According to this classification, it can be easily noticed
that the difference between the results obtained with GA versus RT correspond for
most paths (14 out of 18) to a large effect size.

3.3.5 Final discussion
Bottom line. In this section, we have presented an approach based on genetic
algorithms that allows generating test data for event paths in the Event-B frame-
work. One distinguishing feature of Event-B is its set-theoretic foundation, mean-
ing that in Event-B models, numerical variables are used together with non-numerical
types based on sets. To address this, we extended the fitness functions avail-
able in the search-based testing literature to set types. Moreover, the encoding of
the sought solutions included mixed chromosomes containing both numerical and
non-numerical types. Finally, we followed standard statistical guidelines [133] to
demonstrate the efficiency and effectiveness of our implementation on a diversi-
fied benchmark inspired by discussions with the industry.

Related work. The only approach of test generation for Event-B models is
based on explicit model-checking [80] with ProB [131], which suffers from the
classical state space explosion problem. There is also related work on applying
search-based techniques to EFSMs [139, 136, 149]. Differently from these, we
address a different modeling language and tackle non-numerical types. However,
we can certainly extend our work with ideas from these papers, e.g. regarding
feasible path generation, or from previous work on test generation from B models
(the precursor of Event-B language, even though B is not an event-based language)
[144], [148, ch.3].

Future work. Since the goal is to develop a test method that scales for in-
dustrial Event-B models, we have performed a survey of 29 publicly available
Event-B models posted by the DEPLOY academic and industrial partners11. Be-
side the large size of industrial models, there are a couple of other dimensions
still to be addressed. For instance, Event-B uses a rich set of operations as well as
complex data based on set relations, sets of sets or partial functions. In principle,
these can be mapped to sets and use the proposed methods but this may not scale,
so the fitness functions and encodings might need to be further specialized for
these operators. Moreover, industrial models are usually decomposed in order to
mitigate modeling complexity, which means that we have to extend our methods
to work for modular and component-based models.

11http://deploy-eprints.ecs.soton.ac.uk/view/type/rodin=5Farchive.html
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3.4 Test suite optimisations
Multi-objective test suite reductions Large test suites generated by automatic
test generators usually need to be optimised according to different criteria. In
the following, we follow a more general approach of defining the reduction cri-
teria as multi-objective test suite optimization problems. They are solved using
two modern Multi-Objective Evolutionary Algorithms, namely: NSGA-II [121]
and SPEA-2 [129]. The experiments have been conducted using five test suites
generated from two industrially-inspired Event-B models.

The rest of this section is structured as follows. We introduce the test suite
optimization problem for Event-B models, then we mathematically define the six
different test suite optimizations, and we finally describe the experiment setup and
results.

The presented results are based on [132] and have used publicly available
Event-B models rather than the SAP internal models.

3.4.1 Multi-Objective Test Suite Optimization
Given an Event-B machine M with E = {e1, e2, ..., em} the set of its events, a
test case can be defined as a sequence of events in E that can be executed in the
machine M (an execution path). Each test case begins with a special event called
INITIALISATION which serves to initialize the global variables of the machine
before starting the execution of a test case. A test suite is by definition a collection
of test cases.

We introduce the multi-objective test suite minimization problem. We adopt
here the definitions from [128]. Generally, a multi-objective optimization prob-
lem can be defined as to find a vector of decision variables x, which optimizes a
vector ofM objective functions fi(x), 1 ≤ i ≤M. The objective functions are the
mathematical formulations of the optimization criteria. Usually, these functions
are conflicting, which means that improvements with respect to one function can
only be achieved when impairing the solution quality with respect to another ob-
jective function. Solutions that can not be improved with respect to any functions
without impairing another one are called Pareto-optimal solutions.

Formally, let us assume that, without loss of generality, the goal is to minimize
the functions fi(x), 1 ≤ i ≤M. A decision vector x is said to dominate a decision
vector y (we write x � y) if and only if the following property is satisfied by their
objective vectors:

fi(x) ≤ fi(y), ∀i ∈ {1, 2, ...,M} and ∃i0 ∈ {1, 2, ...,M}, fi0(x) < fi0(y).

The dominance relations states that a solution x is preferable to another solu-
tion y if x is at least as good as y in all objectives and better with respect to at least
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one objective. The Pareto-optimal set is the set of all decision vectors that are not
dominated by any other decision vectors. The corresponding objective vectors are
said to from Pareto frontier. Therefore, the multi-objective optimization problem
can be defined in the following manner:

Given: a vector of decision variables, x, and a set of objective functions,
fi(x), 1 ≤ i ≤M ,

Problem: minimize{f1(x), f2(x), ..., fM(x)} by finding the Pareto-optimal set
over the feasible set of solutions.

With respect to multi-criteria test suite optimization, the objective functions fi
are the mathematical descriptions of the testing criteria that must be satisfied to
provide desired adequate testing of the model. In real industrial testing problems,
there exist multiple test criteria, because a single ideal criterion is simply impossi-
ble to be achieved. For example, a frequently optimization problem is to produce
a minimal test suite which achieves maximal coverage of the model entities with
a minimal execution cost. Therefore, this is a bi-objective minimization test suite
problem.

Formally, multi-objective test suite optimization problem can be defined in the
following manner [128]:

Multi-Objective Test Suite Optimization.
Given: a test suite TS, a vector of M objective functions fi, 1 ≤ i ≤M
Problem: to produce a subset T ⊂ TS, such that T is a Pareto-optimal set

with respect to the set of the above objective functions.
In the following, we instantiate this general multi-objective test suite optimiza-

tion problem with respect to our Event-B models.
We assume an Event-B machine M for which we have generated a test suite

TS. Of course, TS satisfies a set of test requirements which are expressed as a
level of coverage of the model. For the moment, we only consider that the test
suite TS achieves the following simple coverage criterion:

Event Coverage Criterion: A test suite TS = {t1, ..., tm} of m test cases for
an Event-B model M is said to achieve event coverage criterion if and only if for
each event e of the model M there exists a test case ti ∈ TS which covers e.

Having the above criterion in mind, we can formulate the following optimiza-
tion problem:

Test Suite Minimization Problem.
Given: A test suite TS generated for a machine M with E = {e1, e2, ..., en}

the set of events, and subsets of TS, Tis, one associated with each of the eis such
that any one of the test cases tj belonging to Ti can be used to cover ei.

Problem: Find minimal test suite T from TS which covers all ei.
As also mentioned in the previous section, this problem is NP-complete be-

cause it can be reduced to the minimum set-cover problem [120] as follows. We
recall that for us a test case tc ∈ TS is an execution path which consists in a
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sequence of events from E. Let be cov(tc) = {e ∈ E|tc covers e} the set of
events covered by test case tc. By definition, cov(tc) is a subset of E. Therefore
the solution T of the above test suite minimization problem is exactly a minimum
set cover for E, because ⋃

t∈T
cov(t) = E

and T is the minimal subset of TS which covers E.
Many solutions have been proposed to solve this test suite minimization prob-

lem. [119, 124, 117, 126, 118]. Due to its exponential complexity, we use Multi-
Objective Evolutionary Algorithms for solving it. For that, we mathematically re-
formulate it as a constraint bi-objective test suite optimization problem (see TSO1
problem below).

3.4.2 Optimization Criteria
Based on practical experience at SAP, we propose here different test suite opti-
mization criteria.

TSO1-Minimizing the size of the test suite. Due to the restrictions of time,
obtaining a minimal test suite which achieves maximal level of coverage is of par-
ticular interest among testers. Therefore the goal of this problem is to produce a
test suite that contains the smallest possible number of test cases that achieve the
same coverage (in our case, the event coverage) as the complete test suite. We
formulate this problem as a constraint bi-objective optimization problem: maxi-
mize event coverage (the first objective) by a minimum number of test cases (the
second objective) under the constraint that at least a test case has been selected.
The problem can be mathematically described in the following manner.

Let be TS = {t1, t2, ..., tm} the initial set ofm test cases andE = {e1, e2, ..., en}
the set of the events to be covered. We recall that cov(tc) is the set of events
covered by the test case tc. Given an order between the elements of a set, a
subset T ⊂ TS can be mathematically represented by a binary vector x =
(x1, x2, ..., xm) ∈ {0, 1}m with

xi =

{
1, ti ∈ T
0, ti /∈ T

, 1 ≤ i ≤ m.

Therefore the constraint bi-objective test suite optimization problem to be
solved is the following:

Minimize (f1(x), f2(x))

Subject to:
m∑
i=1

xi ≥ 1 (T 6= ∅)
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Where:

f1(x) = 1−
m∑
i=1

(xi ·
|cov(ti)|

n
) (maximize the coverage)

f2(x) =

∑m
i=1 xi
m

(minimize the size of test suite).

A Pareto-optimal solution of the above problem corresponds to a minimal sub-
set of the test suite TS which achieves a maximal level of coverage. More, we
can see that f1 : {0, 1}m → [0, 1) and f2 : {0, 1}m → (0, 1]. Therefore we avoid
to select the empty set as a solution.

TSO2-Minimizing the number of the executed events. In order to reduce
the effort of the testing process, the number of executed events from the whole
test suite should be minimized. Therefore we want to obtain test suites which
achieve the event coverage criterion with a minimum number of executed events.
The first objective function f1 and the constraint from the problem TSO1 remain
valid. Let be len(tc) the length of the test case tc ∈ TS. The second objective
function f2 which can be used to minimize the number of executed events by the
subset T ⊂ TS is

f2(x) =
1∑m

k=1 len(tk)

m∑
i=1

(xi · len(ti)).

TSO3-Minimizing the length of the longest execution path. The longer
execution paths are harder to maintain. In this problem we control the lengths
of the execution paths by minimizing the length of the longest test case. The
mathematical formulation is the following:

Minimize (f1(x), f2(x))

Where f1(x) is the same as for TSO1 problem and

f2(x) = max{len(ti)|xi = 1 and 1 ≤ i ≤ m}.

The second objective function f2 is used for minimizing the length of the
longest test case.

TSO4-Minimizing the execution time. We measure the execution time for
each test case tc from the initial test suite TS. Let us denote by time(tc) the exe-
cution time of tc. Then the execution time of a test suite T ⊂ TS is

∑
tc∈T time(tc).

In this problem the goal is to minimize the execution time of the test suites. The
first objective and the constraint are the same as for TSO1 problem. The second
objective function f2 to be minimized is

f2(x) =
m∑
i=1

(xi · time(ti)) (minimize the execution time).
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TSO5-Maximizing the distribution quality. In order to understand the prob-
lem proposed here, let us consider a simple example. Let be T1 = {e1e3e4, e1e2, e3e2e5}
and T2 = {e2e2e4, e1e2, e3e5} two test suites which cover the set of events E =
{e1, e2, ..., e5}. The events e1 and e2 are executed an equal number of times in T1,
while they are not in T2. We say that T1 has a better distribution quality. There-
fore the goal is to obtain test suites with a good distribution of the events. This
property is a practical requirement of users.

In the following, we propose an objective function which measures the dis-
tribution quality of a given test suite T ⊂ TS. Let be TS = {t1, t2, ..., tm} the
initial test suite and E = {e1, e2, ..., en} the set of the events. Let be a matrix A
which captures the events covered by each test case tc in TS; the number of rows
of A equals the number of events to be covered, n, and the number of columns
equals the number of test cases in the initial test suite, m. Therefore the entries
(aij)1≤i≤n,1≤j≤m of A are

aij =

{
k, tj covers ei by k times
0, ei is not covered by tj

, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Let be x = (x1, x2, ..., xm) ∈ {0, 1}m the mathematical representation of the
test suite T ⊂ TS. We define the matrix D(x) to be

D(x) = A×


x1
x2
...
xm


More exactly, D(x) is a vector of n components di(x), 1 ≤ i ≤ n. From the

definition, the entry di(x) =
∑m

k=1(aik · xk) of D denotes the number of times the
event ei was covered by the test suite T .

Now the mean amount of executions per event in T is exactly

mT (x) =
1

n

n∑
i=1

di(x).

If the test suite T has a good distribution of the events, we would expect
di(x), 1 ≤ i ≤ n values to stay near the mean value mT (x). Therefore in or-
der to obtain a good distribution of the events we define the objective function to
be minimized in the following manner:

f(x) =
1

n

n∑
i=1

(di(x)−mT (x))
2.

Let us illustrate this definition on our simple example. We consider that TS =
T1 ∪ T2 = {e1e3e4, e1e2, e3e2e5, e2e2e4, e1e2, e3e5}. Then, x1 = (1, 1, 1, 0, 0, 0)
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and x2 = (0, 0, 0, 1, 1, 1) are the mathematical descriptions of T1 and T2 respec-
tively. Given that, the matrix A will be

A =


1 1 0 0 1 0
0 1 1 2 1 0
1 0 1 0 0 1
1 0 0 1 0 0
0 0 1 0 0 1


and

D(x1) = A×



1
1
1
0
0
0


=


2
2
2
1
1

 , D(x2) = A×



0
0
0
1
1
1


=


1
3
1
1
1


Further calculation shows that f(x1) = 0.24 and f(x2) = 0.64. Therefore the

test suite T1 has a better distribution of the events.
We formulate this problem as a constraint single-objective optimization prob-

lem and search for solutions which minimize f(x) subject to

di(x) ≥ 1, 1 ≤ i ≤ n (each event is covered at least one time).

TSO6-Balancing the lengths while minimizing the longest path. Finally,
we propose here to balance the lengths of the execution paths while we keep valid
the two objectives of TSO3 problem (achieve event coverage while minimize the
length of the longest path). Therefore this problem is a 3-objective test suite op-
timization problem. We search here for test suites which achieve event coverage
by short and balanced execution paths. The third objective function can be math-
ematically formulated as below.

We remember that len(tc) denotes the length of the test case tc. Let be T ⊂
TS a test suite and x its mathematical description. First, we define the mean of
the lengths as

mlen
T (x) =

1

|T |

m∑
i=1

(xi · len(xi)).

If the test suite T contains balanced execution paths, the len(tc), tc ∈ T values
will stay near the mean value mlen

T (x). Given that, the third objective function to
be minimized can be defined as

f3(x) =
1

|T |

m∑
i=1

(xi · (len(ti)−mlen
T (x))2)
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Table 3.14: Summarize the six test suite optimization problems.

Problem Type Constraint Description
TSO1 bi-objective yes Minimizing the size of the test suite
TSO2 bi-objective yes Minimizing the no. of the executed events
TSO3 bi-objective no Minimizing the longest execution path
TSO4 bi-objective yes Minimizing the execution time
TSO5 single-obj. yes Maximizing the distribution quality
TSO6 3-objective no Balancing the lengths + TSO3 problem

We solve all these six test suite optimization problems using multi-objective
evolutionary algorithms. In Table 3.14 we summarize the properties of our prob-
lems.

3.4.3 Experiments

We provide now the results of a couple of experiments to verify the efficiency and
effectiveness of the presented methods.

Solution Encodings. We chose two modern and widely used Pareto efficient
genetic algorithms, NSGA-II and SPEA-2 [129]. When using evolutionary al-
gorithms for solving a multi-objective test suite optimization problem, we must
properly encode the possible solutions of the problem. Let be T ⊂ TS a subset of
the initial test suite TS = {t1, t2, ..., tm}. We use the mathematical representation
x ∈ {0, 1}m of T (see Section 3.4.2) to encode the possible solutions. Therefore
binary encoding is considered to be a natural representation for the possible so-
lutions. The inclusion and exclusion of a test case within a subset of the initial
test suite are represented by 1 and 0 respectively in a binary string (chromosome
string).

Subjects. We conducted the experiments with a total of five test suite subjects
of varying sizes and complexity levels. The test suites were generated from two
industrial inspired Event-B models: the BepiColombo and SSFPilot models which
are publicly available DEPLOY model repository12. The first four machines are
different levels of refinements of BepiColombo project and the last machine is
the high level of abstraction of SSFPilot model. The sizes of the machines are
listed in Table 3.15. Moreover, the test suite generated from these Event-B models
were obtained using our MBT plugin13 available for Rodin. The test generation
algorithm is the one presented in the previous section.

The two Event-B models are summarized below:

12http://deploy-eprints.ecs.soton.ac.uk
13http://wiki.event-b.org/index.php/MBT_plugin
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Table 3.15: Sizes of five test suite subjects generated from two industrial inspired
models (number of events, size of test suites and maximum length of test cases).

Subject No. of events Size of TS Max. size of tcs
BepiColombo_M0 5 40 7
BepiColombo_M1 10 170 7
BepiColombo_M2 12 256 7
BepiColombo_M3 16 240 7
SSFPilot_TCTM 13 786 8

− BepiColombo: This is an abstract model14 of two communication modules
in the embedded software on a space craft. The Event-B model was pro-
posed for formal validation of software parts of BepiColombo mission to
Mars15. The model has different levels of refinements. In the abstraction,
M0, the main goal of the system is modeled. The details of the system are
added through three refinement levels, M1, M2 and M3. The modeling ap-
proach starts on the first level with 5 set-type variables and 5 events and
ends up with 18 variables and 16 events.

− SSFPilot: This is an Event-B model16 of a pilot for a complex on-board
satellite mode-rich system: Attitude and Orbit Control System (AOCS).
In [125] the authors present a formal development of an AOCS in Event-
B modeling language. They show that refinement in Event B provides the
engineers with a scalable formal technique that enables both development of
mode-rich systems and proof-based verification of their mode consistency.

Results. The test suite optimization techniques attempt to reduce the test suite
cost w.r.t. a given coverage criterion (event coverage in our case). Given that,
the percentage reduction will be used as a measure for comparative analysis. To
increase the confidence, we compare the results produced by the two algorithms:
NSGA-II and SPEA-2.

We have used the multi-objective evolutionary algorithm framework jMetal
[122] for our experiments. The two algorithms were configured with population
size of 100. The archive size of SPEA-2 was set to the same value, 100. The
stopping criterion is to reach the maximum number of generation which was set
to 100. The both algorithms use the following genetic operators: the binary tour-
nament selection operator, the single point crossover operator with probability of

14http://eprints.ecs.soton.ac.uk/22048/5/Rodin_Space_Craft.zip
15See http://deploy-eprints.ecs.soton.ac.uk/72/1/BepiColombo_-_Modelling_Approach.pdf

and http://en.wikipedia.org/wiki/BepiColombo
16http://deploy-eprints.ecs.soton.ac.uk/58/
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Table 3.16: TSO1. Average reduced sizes for optimized test suite T .

NSGA-II SPEA-2
Subject f2(xTS) Avg f2(xT ) Avg% Avg f2(xT ) Avg%
BepiColombo_M0 40 1.03 97.42 1.01 97.47
BepiColombo_M1 170 7.59 95.53 8.72 94.87
BepiColombo_M2 256 28.87 88.72 30.98 87.89
BepiColombo_M3 240 26.14 89.10 27.97 88.34
SSFPilot_TCTM 786 228.42 70.93 232.5 70.41

Table 3.17: TSO2. Average reduced number of executed events for optimized test
suite T .

NSGA-II SPEA-2
Subject f2(xTS) Avg f2(xT ) Avg% Avg f2(xT ) Avg%
BepiColombo_M0 252 8.02 96.8 8.02 96.8
BepiColombo_M1 1300 65.09 94.99 71.93 94.46
BepiColombo_M2 1977 224.42 88.65 236.34 88.04
BepiColombo_M3 1873 204.77 89.06 221.39 88.17
SSFPilot_TCTM 6554 1897.79 71.04 1931.98 70.52

0.9 and the single bit-flip mutation operator with the mutation rate of 1/m where
m is the length of the bit-string (i.e. the size of the initial test suite).

For each test suite subject, each optimization problem and each algorithm,
100 independent runs were performed. The results are presented in Tables 3.16-
3.21. To compare the results, we computed for each problem the specific objective
function values for the initial test suite. For example, the column f3(xTS) from
the Table 3.21 indicates the values of the third objective function of the problem
TSO6 when computed for the initial test suite TS. Otherwise, in each table, the
average values of specific objective functions of the solutions are indicated. As
shown in the tables, the results of the two algorithms are comparable. We obtained
high values for the percentage reduction of test suite because of the simplicity of
the event coverage criterion.

3.4.4 Conclusions

In this subsection the multi-objective test suite optimization problem for Event-
B testing was introduced. Different optimization criteria were proposed and the
resulted problems were solved using two modern multi-objective evolutionary al-
gorithms. For all optimization problems the considered test adequacy criterion
was the event coverage. All our optimization problems can be easily formulated
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Table 3.18: TSO3. Average length of the longest path of optimized test suite T .

Subject NSGA-II SPEA-2
BepiColombo_M0 4.69 4.84
BepiColombo_M1 7 7
BepiColombo_M2 7 7
BepiColombo_M3 7 7
SSFPilot_TCTM 8 8

Table 3.19: TSO4. Average execution time (in seconds) of optimized test suite T .

NSGA-II SPEA-2
Subject f2(xTS) Avg f2(xT ) Avg% Avg f2(xT ) Avg%
BepiColombo_M0 4.6 0.13 97.07 0.14 96.95
BepiColombo_M1 48.43 1.88 96.11 2.16 95.54
BepiColombo_M2 130.16 12.39 90.48 13.40 89.70
BepiColombo_M3 204.28 20.43 89.99 22.13 89.16
SSFPilot_TCTM 197.80 50.78 74.32 51.38 74.02

Table 3.20: TSO5. Average distribution quality of optimized test suite T .

NSGA-II SPEA-2
Subject f(xTS) Avg f(xT ) Avg% Avg f(xT ) Avg%
BepiColombo_M0 520.24 0.16 99.96 0.16 99.96
BepiColombo_M1 8771.4 17.03 99.80 22.45 99.74
BepiColombo_M2 19840.90 238.98 98.79 270.26 98.63
BepiColombo_M3 14432.43 169.14 98.82 191.42 98.67
SSFPilot_TCTM 166187.40 13251.76 92.02 13667.67 91.77

Table 3.21: TSO6. Average balancing values of the lengths of optimized test suite
T .

NSGA-II SPEA-2
Subject f3(xTS) Avgf3(xT ) Avg% Avgf3(xT ) Avg%
BepiColombo_M0 2.16 0.00 100 0.00 100
BepiColombo_M1 1.81 0.21 88.27 0.22 87.52
BepiColombo_M2 1.57 0.33 78.41 0.34 77.87
BepiColombo_M3 1.62 0.36 77.76 0.37 77.04
SSFPilot_TCTM 2.21 1.15 47.96 1.17 47.05
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in a more general framework: a test suite T must meet a set of n requirements
{r1, r2, ..., rn} to provide the desired ’adequate’ testing of the model. We will
consider in the future more complex coverage criteria.
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3.5 Tool description
In this section we provide more details on the Rodin plug-in implementing the
previous introduced methods. A model for BepiColombo is used as a running
example. At the end a couple of screenshots are made available. Please check out
also the webpage of the plugin at:

http://wiki.event-b.org/index.php/MBT_plugin.

3.5.1 Tool overview driven by the BepiColombo example
In this section we describe the main features of our tool and exemplify it using an
Event-B model for the BepiColombo use case, introduced in [130].

Overview. The bird’s eye view of the tool is depicted in Fig. 3.12. We take
as input an Event-B model M and a finite bound ` and we output a finite cover
automaton approximating the set of feasible sequences of events of M of length
up to ` and a test suite, i.e. a set of sequences including test data that make the
sequences executable. The core procedure of "Model Learning" was presented in
the previous section. Thus one can (a) use the "next refinement" of the Event-B
model that contains more information; or (b) one can "provide a counterexam-
ple" by manually or automatically providing sequences that are feasible in the
Event-B model, but are not in the cover automaton or vice-versa; these counterex-
amples are used by the learning procedure to make the automaton approximating
the Event-B model more precise; or (c) one can increase the bound ` and implic-
itly feed the learning engine with longer sequences which again will increase the
precision of the finite state approximation. At any point in the time, one can use
the generated cover automaton to generate tests that exercise different sequences
through the Event-B model. There are many existing methods for test genera-
tion from finite state models. In our case, we use internal information from the
learning procedure, which maintains a so-called "observation table" which keeps
track of the learned feasible sequences. Sets of feasible sequences in this table
will provide the desired test suite. Note that during the feasibility check of the
sequences in Event-B, test data are also generated. This is implemented by using
a constraint-solver for Event-B [131] and is one of the most time consuming part
of the algorithm. The test suite obtained satisfy strong criteria for conformance
testing (usually required in the embedded system domain) and may be large. If
weaker test coverage like state-, transition- or event-coverage are desired, opti-
mization algorithms17 are applied on the test suite (see rightmost loop in the Fig.

17We implemented different optimizations as proposed by one of the co-authors in [132] using
the jMetal framework (http://jmetal.sourceforge.net) based on genetic algorithms.
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Figure 3.12: Overview of the implemented approach.

3.12).

An Event-B model for a space craft system. BepiColombo18 mission is one of
the case study used by SSF. The paper [130] provides a rigorous Event-B model
description, which we follow next with the scope of introducing the modeling in
Event-B.

Briefly, the BepiColombo mission consists of two orbiters. The Mercury Plan-
etary Orbiter is responsible for carrying remote sensing and radioscience instru-
mentation and an important part of it is the core, which, together with the mission-
critical software that controls the whole system, is responsible for controlling the
power of devices and their operation states and to handle TeleComand (TC) and
TeleMessage (TM) communications, as follows: (1) A TeleCommand (TC) is re-
ceived by the core from Earth; (2) The core software checks its syntax; (3) After
passing the syntactic validation, a semantic checking is carried out on the received
TC; (4) If the TC is valid, a control TeleMessage (TM) is generated and sent to
Earth, if needed; (5) Some particular TCs require more than one data TM to be
sent back to Earth.

BepiColombo is modeled in Event-B using several levels of refinements (com-
bined with atomic and model decompositions which we do not address here). The
main goal of the system is specified at a very abstract level, with a machine M0.
The system specification is concretized through three further refinement levels,
M1, M2 and M3. Fig. 3.13 presents the five events of M0, plus a special event
called ’Initialisation’. We see that each event has a local parameter (in this case
’tc’), a guard that decides whether the event is executed or not (for instance the
guard of ReceiveTC is tc ∈ TC\RecTC that check that the input parameter tc is

18http://en.wikipedia.org/wiki/BepiColombo
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event ReceiveTC

any tc

where 

grd1: tc ϵ TC \ RecTC

then 

act1: RecTC := RecTC ᴜ {tc}

end

event TC_Valida#on_Ok

any tc

where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)

then 

act1: TC_Val_Ok := TC_Val_Ok ᴜ {tc}

end

event TCValid_GenerateData

any tc

where 

grd1: tc ϵ TC_Val_Ok \ TCVal_GenData

grd2: TC_Type(tc) ϵ {HK_on_TC, SCI_on_TC}

then 

act1: TCVal_GenData := TCVal_GenData ᴜ {tc}

end

event TCValid_ReplyDataTM

any tc

where 

grd1: tc ϵ TCVal_GenData \ TCVal_ReplyDataTM

then 

act1: TCVal_ReplyDataTM := TCVal_ReplyDataTM ᴜ {tc}

end

event TC_Valida#on_Fail

any tc

where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)

then 

act1: TC_Val_Fail := TC_Val_Fail ᴜ {tc}

end

event INITIALISATION

act1: RecTC := Ø

act2: TC_Val_Ok := Ø

act3: TCVal_GenData := Ø

act4: TCVal_ReplyDataTM := Ø

act5: TC_Val_Fail := Ø

end

Figure 3.13: The events of the abstract machine M0 in BepiColombo Event-B
model [130]

a telecommand (TC) that was not received yet (RecTC)), and an action code (for
ReceiveTC, we add the received telecommand tc to the set of already received
telecommands by RecTC := RecTC ∪{tc}). Note that there are global variables
like RecTC of type Set, that are initialized in the event ’Initialisation’. Once the
’Initialisation’ event is executed, the modeled system moves from one state to
another by choosing one event with its guard true and executing its action code.
Note that the current state of the Event-B model is not explicit, but given by the
value of its global variables. Thus a finite automaton approximating the behavior
of the Event-B model would be very helpful in better understanding the control
flow of the system.

Learning and test generation approach. The concept of state is at the heart of
testing and many test generation techniques from (extended) finite state machines
exist. Since Event-B states are not given explicitly, in order to apply the afore-
mentioned techniques, an explicit state model has to be constructed first. Our
tool addresses this problem, keeping under control the state space explosion by
implementing an incremental model-learning algorithm to iteratively construct a
approximation of a subset of a state space.

Given the BepiColombo Event-B model and an upper bound `, we will incre-
mentally construct finite cover automata that will eventually cover all executable
event sequences of length less than or equal to `. Figure 3.14 (plotted by our tool)
illustrates the cover automaton for the first machine M0 and ` = 4, which is min-
imal by construction, having the initial state marked with q0, transitions labeled
with event names and final states marked with a double circle. Starting from the
state q0, the enabled event sequences can be identified by following the transitions
with the purpose of reaching the automaton final states, representing a subset of
the communication scenarios the space craft system may encounter.

A conformance test suite heavily exercising the system would consist of 17
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Figure 3.14: The generated cover automaton for M0 and ` = 4

test cases. However, a test suite covering each event once can consist of 2 tests (of
length up to 4): (a) ReceiveTC(tc1), TC_Validation_Ok(tc1), TCValid_GenerateData(tc1),
TCValid_ReplyDataTM(tc1) and (b) ReceiveTC(tc2), TC_Validation_Fail(tc2).

Also, a list of infeasible paths (sequences of events for which test data was
not found, being disjoint form the list of timeout paths) is maintained during
the model-learning process and displayed on the same wizard page, e.g. the
invalid communication scenario: INITIALIZATION, ReceiveTC, TC_Validation_Ok,
TCValid_ReplyDataTM.

3.5.2 Tool architecture
Architecture. The tool is a Rodin plugin implemented in Java (over 5,500 LOC),
that can be called on any Event-B model with several levels of refinements. The
architecture of the tool is presented in Fig. 3.15, where the main classes of the
modules are captured (cf. Fig. 3.12). It implements adaptations of Angluin’s
learning algorithms for cover automata, test generation and optimization algo-
rithms and is integrated with Rodin, ProB and jMetal plugins. A wizard-based UI
guides the user execution.

3.5.3 Tool presentation with screenshots
Below we provide some more information on the tool, including installation in-
structions and screenshots.

Installation

The MBT for Event-B plug-in (also referred to as MBT plugin) relies on Rodin
release 2.0 or newer and ProB plugin 2.2 or newer. The following steps guide you
through the installation process:

1. Download the latest Rodin release for your platform from Sourceforge (http:
//sourceforge.net/projects/rodin-b-sharp)
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Figure 3.15: High level architecture of the tool.

2. Extract the downloaded zip file.

3. Start Rodin from the folder where you extracted the zip file in the previous
step.

4. Install the ProB plugin. See ProB installation instructions here: http:
//www.stups.uni-duesseldorf.de/prob_updates

5. Install the MBT for Event-B plugin:

(a) In the menu choose Help -> Install New Software....

(b) Click Add....

(c) As Location enter http://fmi.upit.ro/mbt_plugin

(d) Enter a name e.g. MBT for Event-B Plugin.

(e) Click Ok.

6. Restart Rodin as suggested.

Usage

This subsection should help you to get started with the MBT plugin.

Short theoretical aspects The MBT for Event-B plugin iteratively constructs
a subset of the state space of an Event-B model (which is essentially an ab-
stract state machine where the states can be implicitly derived from the values
of the model variables), together with an associated test suite, using an incremen-
tal model learning which keeps under control the state space explosion. In the
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following, we will refer to this process as the Learn DFCA algorithm. The state
model constructed is based on the concept of deterministic finite cover automaton
(DFCA) of a finite set L, which is a deterministic finite automaton which accepts
all sequences in L but may also accept sequences that are longer than every se-
quence in L, with respect to an upper bound ` on the length of the considered
sequences. Given an Event-B model and an upper bound `, the MBT plugin will
incrementally construct finite cover automata that will eventually cover all exe-
cutable event sequences of length less than or equal to `. Also, a set of test cases
associated with the cover automata is evolved during iterations, along with the
corresponding test data that makes them executable on the Event-B model. The
execution of a test case implies the existence of appropriate test data for the events,
i.e. appropriate values for the event parameters in order to ensure that the corre-
sponding guard is true. By definition, a test suite is a collection of test cases. The
state model is constructed in a gradual manner, permitting the integration of the
Event-B refinement in this process. Whenever the generated cover automaton is
found inaccurate, a counterexample path (a collection/sequence of events) must
be provided and the Learn DFCA algorithm must be re-executed.

Starting the plugin To start the MBT for Event-B plugin, the "Generate Test
Suite" action must be selected from the context menu of an Event-B machine.

The plugin workflow is based on the concept of wizard, guiding the user step
by step toward test suite generation, starting with the most abstract machine and
ending with the selected one.
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Setting the constant value The first step requires the user to specify the value
for the maximum sequence length constant `, which is the upper bound on the
length of the event sequences accepted by the cover automaton which will be
generated.

By clicking the Next button, the Learn DFCA algorithm is executed, comput-
ing the deterministic finite cover automaton and the associated test suite along
with the corresponding test data.
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Displaying the generated cover automaton The second wizard page displays
the computed cover automaton and (if this is the case) the timeout paths. A time-
out path is a sequence of events of length at most `, for which no test data were
found to trigger it within a given time bound. In the graphical representation of the
automaton, the final states are drawn in double line, whereas non-final states are
drawn in single line. The initial state is labeled q0 and the transitions are labeled
with event names.
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Based on the user selection, the following options are available:

− moving the generated automaton as a whole

− repositioning selected states of the automaton or highlighting transitions

− displaying the generated test suite

− providing a counterexample path

Displaying the generated test suite By choosing to view the generated test
suite, a list of test cases is provided along with the corresponding test data. The
MBT for Event-B plugin provides a means for optimizing a test suite according
to a chosen coverage criteria, e.g. the all events coverage criterion.

By selecting a coverage criterion and clicking Next, the optimized test suite is
displayed.

Displaying the optimized test suite It displays a list of test cases along with
the corresponding test data, with respect to the selected coverage criterion.

If the all events coverage criterion was selected for test suite optimization
and was not satisfied, a list of uncovered events is provided. Based on the user
selection, the following options are available:
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− proceeding to the next refinement, causing the Learn DFCA algorithm to be
executed for a more concrete machine which refines the current one

− providing a counterexample path

By proceeding to the next refinement, it causes for a more concrete Event-B ma-
chine (which refines the current one) to be loaded and for the DFCA to be re-
computed such that to accept new sequences which include the new events of the
loaded machine.

Providing a counterexample path A counterexample path is sequence of events
of length at most `, which was not accepted by the generated cover automaton.
By providing a counterexample, the Learn DFCA algorithm will compute a new
DFCA which accepts it, if there exist test data to trigger the given event sequence.
The events of the current Event-B machine and their parameters are displayed
in the "Event list" table. By double-clicking an event (or selecting it and then
pressing the green arrow) it is added to the "Selected path" list. The events from
the constructed sequence can be reordered by using the blue arrows or deleted by
using the red cross button.

After building a counterexample path and clicking Next, the wizard returns to
displaying the computed DFCA.
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