

D2 44	Test report of
D2.11	Test report of
	communication platform
	P 33

SubProject No.	SP2	SubProject Title	Core Technology Integration
Workpackage No.	WP2.5	Workpackage Title	Integration and Verification
Task No.	2.5.3	Task Title Verification test of the communication platforms	
Authors F. Alesiani (NEC Europe), N. Zahar Europe), R. Baldessari (NEC Europ Lykkja (Q-Free), M. Goleva (NEC E		C Europe), O. M.	
Dissemination level PU/PP/RE/CO			
File Name		120503-DEL-SP2-WP2.5-D2.11-Test report of communication platform-v09	
Due date		31/01/2012	
Delivery date		20/06/2012	

Abstract	The document describes the tests for the interoperability among different communication platform providers and provides the results of the validation plan tests
	'

European Commission Information Society and Media	Project supported by European Union DG INFSO ICT-2009-6.1, ICT for Clean and Efficient mobility
Project reference	FP7-ICT-2009-4 IP Proposal - 247908
IP Manager	Jean Charles Pandazis, ERTICO – ITS Europe Tel: +32 2 400 0714, E-mail: jc.pandazis@mail.ertico.com

Control sheet

Version history				
Version	Date	Main author	Summary of changes	
01	29/09/2011	Nikola Zahariev	First Version	
02	04/10/2011	Nikola Zahariev	Update after the interoperability tests, added results	
03	17/10/2011	Francesco Alesiani, Roberto Baldessari	Review and restructured the TOC	
05	24/01/2012	Francesco Alesiani	Update with test on 24/01/2012	
06	03/02/2012	Francesco Alesiani	Update with test on 03/02/2012	
07	22/02/2012	Francesco Alesiani	Mapping to the Verification Plan	
08	03/05/2012	Francesco Alesiani	Added result of the communication performance tests.	
09	11/05/2012	Ola Martin Lykkia	Document Review	
1.1	19/06/2012	Ola Martin Lykkia	Document Review	
		Name	Date	
Prepared	Francesco Alesi	ani	11/05/2012	
Reviewed	Zeljko Jeftic		06/06/2012	
Authorized	Jean-Charles Pa	ndazis	20/06/2012	
Verified	erified Manuela Flachi		20/06/2012	
Circulation				
Reci	ipient	Date of subm	ission	
Project partners 20/06/		20/06/2012		
European Comi	nission	20/06/2012		

Table of Contents

TABI	LE OF CONTENTS	3
FIGU	RES	5
TABI	LES	6
TERN	MS AND ABBREVIATIONS	7
	ERENCES	
	NTRODUCTION	
	OMMUNICATION PLATFORM REQUIREMENTS	
2.1.		
2.2.		
2.3. 2.4.		
2.4.		
2.5.		
2.7.		
2.8.		
2.9.		
	OMMUNICATION LAYERS	
3.1.		
3.2.		
3.3.		
3.4. 3.5.		
4. T	EST METHODOLOGY	15
4.1.	• / === / == //	
4.2.		
4.3.	()	
4.4.	T2 – FACILITY LAYER INTEROPERABILITY TEST (FL)	15
5. T	RANSPORT LAYER INTEROPERABILITY TEST	17
5.1.	Introduction	17
5.2.		
5.	2.1. Equipment per provider	
5.	2.2. Required Hardware/ Software	17
5.	2.3. PHY/MAC Configurations	17
5.3.	LAB TESTS DEFINITION	17
	3.1. Lower Layer / Network Layer tests	
	3.1.1. Beacon Test	
	3.1.2. SHB Test	
	3.1.3. Unicast Test	
	Issues or Deviation from Test Plan	
	4.1. Frequency and channel bandwidth	
٥.	4.2. Unicast packets	19

6. ETSI PLUGTEST	20
6.1. Mandatory Tests	20
6.2. OPTIONAL TESTS	21
6.3. LOGICAL ARCHITECTURE	22
6.4. Test Results	22
7. FACILITY LAYER INTEROPERABILITY TEST	23
7.1. Introduction	23
7.2. COMMUNICATION SET UP	23
7.2.1. <i>Q-Free</i>	23
7.2.2. NEC	23
7.2.3. <i>Network</i>	23
7.3. IPv6 Discussion	23
7.4. VERIFICATION STEPS	
7.4.1. Check Message ID definition	
7.4.2. Check Message BTP/UDP/HTTP port configuration	
7.4.3. Check other parameters	
7.4.4. Check time stamps	
7.4.5. Check beacon messages	
7.4.6. Check ecomessage over SHB	
7.4.7. Check ecomessage over unicast	
7.4.8. Check ecomessages over UDP	
7.4.9. Check ecomessages over HTTP	
8. SPECIFIC TEST REPORT	27
8.1. Introduction	27
8.2. ROUND TRIP TIME ANALYSIS	27
9. VERIFICATION PLAN	32
ANNEXES	35
Annex A: SHB log	35
Anney B. Hnigasti oc	

FIGURES

Figure 1 Logical Architecture	22
Figure 2 - Round Trip test scenarios	27
Figure 3 - Round Trip Time sequence diagram	
Figure 4 Dispersion Diagram of the Datagram case	
Figure 5 Dispersion Diagram of the Router case	
Figure 7 Histogram of the RTT of the Datagram case	
Figure 8 Histogram of the RTT of the G5 case	

TABLES

Tabla	1 Darformana statistics) (
rabie	1 Performance statistics	 . 7

TERMS AND ABBREVIATIONS

Abbreviation Definition

CCU Car Communication Unit SHB Single-Hop-Broadcast

PHY Physical layer

MAC Media Access Control
LinkBird NEC communication Unit
CSP Q-Free communication Unit

REFERENCES

- [1] W. Zhang, Ola Martin Lykkja, Roberto Baldessari, "eCoMove D2.4 Cooperative Communication Protocols Specification", eCoMove project deliverable, July 2011
- [2] ETSI ES 202 663, Intelligent Transport Systems (ITS); European Profile Standards for the Physical and Medium Access Layer of 5GHz ITS, January, 2010.
- [3] ETSI TS 102 637-2 V1.2.1, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, March 2011
- [4] IEEE P802.11p-2010, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless Access in Vehicular Environments, July 2010.
- [5] ETSI TS 102 636-5-1 V1.1.1 Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 5: Transport Protocols; Sub-part 1: Basic Transport Protocol, February 2011.
- [6] ETSI TS 102 636-4-1 V1.1.1 Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality, June 2011.
- [7] Ola Martin Lykkia, et al, D2.3 eCoMove Communication platform design specification, eCoMove project deliverable, April 2011.
- [8] Wenhui Zhang, et al, D2.5: Preliminary definition of eco messages, eCoMove project deliverable, March 2012.
- [9] ETSI CTI Plugtests Guide Stable Draft V0.0.6 (2011-09); Cooperative Mobility Services Plugtests; Helmond, Netherlands; 14 - 18 November 2011
- [10] David Sánchez, Rosa Blanco, Yanying Li, "SP2 Verification Plan Working Document", Final, 27/04/2011

20/06/2012 8 Version 1.1

1. Introduction

The aim of this report is to provide information on the results of the various tests performed during the Communication activity of the eCoMove project. The goals of the verification activity were:

- 1) Test the functionality provided by the communication platform
- 2) Test the functions provided by the eCoMessage Bundles
- 3) Report against the verification requirement document [10]
- 4) Report on ETSI plug tests

The document has been organized into the following sections:

- 1) List the requirements defined during the project by the application SPs
- 2) Presentation of the communication stack
- 3) Describe the methodology used for the test definition
- 4) Report on Transport layer test
- 5) Report on the ETSI-PLUGTEST
- 6) Report on the Facility Layer test
- 7) Report on the performance tests
- 8) Review the Verification plan

20/06/2012 9 Version 1.1

2. Communication Platform Requirements

With reference to D2.3: eCoMove Communication platform design specification, in the following the Communication Platform requirements are listed. An additional column identify relevant requirement for the tests.

2.1. Data Exchange

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0017	The eCoMove System Architecture shall provide a high level description of the message sets and data communication protocols to be used in data transfers.	Yes	No
ECOM-RQ- IP-0018	The eCoMove System Architecture shall provide a high level description of data stores and data flows, and shall have a single data dictionary.	n.a.	No
ECOM-RQ- IP-0019	Systems that conform to the eCoMove System Architecture shall exchange information in a manner that permits a given geographic location to be understood by all parties.	n.a.	No
ECOM-RQ- IP-0020	Systems that conform to the eCoMove System Architecture shall exchange information in a manner that permits road and traffic conditions to be understood by all parties.	n.a.	No
ECOM-RQ- IP-0021	The eCoMove System Architecture shall provide a high level description of the message sets used to exchange data with external interfaces.	n.a.	No
ECOM-RQ- IP-0022	The eCoMove System Architecture shall support the use of seamless communications. This shall mean that the use of different communication networks is transparent i.e. switches are made without the intervention of the final user.	IPv6 and NEMO vertical handovers	No
ECOM-RQ- IP-0023	The eCoMove System Architecture shall require systems developed from it to use a communication mechanism that allows flexible routing of messages.	IPv6 and NEMO	No
ECOM-RQ- IP-0024	The eCoMove System Architecture shall require systems developed from it to be able to send and receive information with a pre-defined position accuracy regardless of where the origin and/or destination are located, e.g. in tunnels, urban areas with building, mountains	n.a.	No
ECOM-RQ- IP-0025	The eCoMove System Architecture shall require systems developed from it to use V2V and V2I communications standards that will ensure interoperability across Europe.	ETSI G5 and GeoNetworking protocols	Yes
ECOM-RQ- IP-0026	The eCoMove System Architecture shall require systems developed from it to make use of communication (V2V and V2I) that is minimal and adaptable to future applications.	ETSI G5 and GeoNetworking protocols	No

2.2. Adaptability

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0027	Systems that conform to the eCoMove System Architecture shall be able to provide facilities that accommodate the needs of disabled and elderly persons, when relevant.	n.a.	No
ECOM-RQ- IP-0028	Systems that conform to the eCoMove System Architecture which store data about the travel network (e.g. road network, RSU locations, Green Zones) shall allow that data to be entered and updated	n.a.	No
ECOM-RQ- IP-0029	The eCoMove System Architecture shall not constrain its functionality to be implemented in a single topographical domain, be it urban, inter-urban or rural.	IPv6 and ETSI G5	No
ECOM-RQ- IP-0030	The eCoMove System Architecture shall not constrain its functionality to be implemented by specific local organisations.	n.a.	No
ECOM-RQ- IP-0031	The eCoMove System Architecture shall not constrain user interfaces to be of a particular type, or from a particular manufacturer.	n.a.	No
ECOM-RQ- IP-0032	The eCoMove System Architecture shall not require that each of its user interfaces must operate on a specific item of equipment, unless it is for safety reasons.	n.a.	No

Version 1.1 20/06/2012 10

2.3. Continuity

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0036	The eCoMove System Architecture shall provide functionality that enables checking if quality of information content is continuous and consistent, both in time and space (i.e. as the traveller moves).	IPv6 and NEMO	No
ECOM-RQ- IP-0037	The eCoMove System Architecture shall take into account in the design environmental stress and infrastructure failures.	n.a.	No

2.4. Cost/benefit

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0038	Whenever possible and practical, the eCoMove System Architecture shall use the same data as input to several parts of its functionality.	n.a.	No
ECOM-RQ- IP-0039	Removed – duplicate	n.a.	No
ECOM-RQ- IP-0040	The eCoMove System Architecture shall aim to have all systems developed from it to be able to use the most cost-effective means of communication available.	Open source, COTS hardware cost based media selection	No
ECOM-RQ- IP-0041	The eCoMove System Architecture shall aim that all systems developed from it enable operating costs to be reduced whenever possible, when compared with the systems that they replace.	Open source, COTS hardware Patent-free	No

2.5. Expandability

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0042	The eCoMove System Architecture shall allow systems developed from it to have an evolutionary development strategy that enables their continuous upgrading.	Open source, COTS hardware standardisation	No
ECOM-RQ- IP-0043	The eCoMove System Architecture shall provide services that are not constrained to operate in a particular geographic region.	n.a.	No

2.6. Quality of Data Content

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0046	The eCoMove System Architecture shall enable all information systems developed from it to provide data with a stated accuracy, either as additional information or as part of the documentation, at all times.	Yes	No
ECOM-RQ- IP-0047	The eCoMove System Architecture shall require all systems developed from it to check all input data for validity, whenever possible, and to report failures.	Yes	Yes, partially only geometrical filtering
ECOM-RQ- IP-0048	The eCoMove System Architecture shall enable all systems developed from it to check data values by comparing different sources, when available, so as to ensure high-accuracy and completeness.	n.a.	No
ECOM-RQ- IP-0049	The eCoMove System Architecture shall require all systems developed from it to use a databases structure that is compatible on local/regional/national level (i.e. data from local/regional and national databases can be exchanged)	n.a.	No
ECOM-RQ- IP-0050	The eCoMove System Architecture shall require all systems developed from it to reject all data communicated to it that fails any validity checks.	Yes	Yes, partially only geometrical filtering

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- IP-0051	The eCoMove System Architecture shall require all systems developed from it to be able to adjust the speed with which data is accessed according to the need for that data to accurately reflect the current situation.	Yes	Yes, ???
ECOM-RQ- IP-0052	\times I support priority quality and reliability concepts for dynamic content handling and I con		No
ECOM-RQ- IP-0053	The eCoMove System Architecture shall require all systems developed from it to support digital rights management for all data that it uses, particularly where this data is obtained from other systems, e.g. map data.	Not in eCoMove demonstrators. Security aspects in general is not focus of eCoMove.	No

2.7. Communication platform

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- SP2-0001	The eCoMove System developed should be platform Independent	Yes	Yes
ECOM-RQ- SP2-0002	the eCoMove platform should be CVIS compatible	Requirement removed	Na
ECOM-RQ- SP2-0003	the eCoMove platform should be MOOVE compatible	Requirement removed	Na
ECOM-RQ- SP2-0004	eCoMove platforms should be interoperable	Yes	Yes
ECOM-RQ- SP2-0005	SP2 should provide harmonised communication interfaces for every eCoMove platform	Yes	Yes, ETSI specs
ECOM-RQ- SP2-0006	Characteristic distance of V-I communication: The RSU is expected to communicate with vehicles in 300m range	Yes	Yes
ECOM-RQ- SP2-0007	The ecoFVD and ecoTSD message must be delivered to destination node within the range of 100 millisec (single hop API – to – API timing)	Yes	Yes
ECOM-RQ- SP2-0008	The eCoMove platform should support information exchange between central ITS stations and vehicle or roadside ITS stations using 3G communication	Yes	No

2.8. Communication system

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- SP2-0009	The eCoMove System shall support two-way roadside-to vehicle communication (point-to-point).		Yes
ECOM-RQ- SP2-0010	Yes		Yes
ECOM-RQ- SP2-0011	The eCoMove System shall support one-way roadside-to vehicle communication (point-to-multi-point) by broadcasting to a specific area (geo-broadcast)	Single hop broadcast only	Yes
ECOM-RQ- SP2-0012	The eCoMove System shall support one-way vehicle-to-vehicle communication (point-to-multi-point) by broadcasting to a specific area (geo-broadcast) Single hop broadcast only		Yes
ECOM-RQ- SP2-0013	The eCoMove System shall be able to transport a message into a specific area (geocast)	Single hop broadcast only	Yes
ECOM-RQ- SP2-0014	The eCoMove System shall support communication between RSUs	Yes	No

2.9. Requirements not listed in D2.1

A number of requirements relating to the Communication platform are not listed in D2.1 and D2.2 have been identified in WP2.4.1. They are shown below with numbering starting at 1000.

REQ NR.	Description	Relevance to Pilot	Communication Platform applicability
ECOM-RQ- SP2-1001	Timestamps used in external communication shall have an accuracy better than 100 ms.	Yes	Yes, to which timestamp???
ECOM-RQ- SP2-1002	Vehicle router shall be compatible with vehicle environments, regarding power supply, size headless operation, and other environmental parameters.	No formal, standard- based requirements.	No
ECOM-RQ- SP2-1003	Road Side Units shall be compatible with road side cabinet, unattended operation and environmental parameters.	No formal, standard- based requirements.	No
ECOM-RQ- SP2-1004	Vehicle and Road Side router shall be able to process 100 incoming messages per second.	Yes	Yes
ECOM-RQ- SP2-1005	Communication services should be made available to application on an attached host computer running Windows/OSGi or Linux/OSGi.	Yes	Yes
ECOM-RQ- SP2-1006	Communication platform shall support IPv6	Yes	No
ECOM-RQ- SP2-1007	Communication platform shall support ETSI GeoNetworking Single Hop Broadcast over IEEE802.11p using ETSI G5	Yes	Yes
ECOM-RQ- SP2-1008	Communication platform shall support unicast single hop communications V2I and V2V.	Yes	Yes
ECOM-RQ- SP2-1009	Communication platform shall support Service Advertisement.	Yes	No
ECOM-RQ- SP2-1009	Communication platform shall provide emulation facilities to enable development and testing without need for router hardware.	Yes	No
ECOM-RQ- SP2-1010	Router shall maintain a reference clock	Yes	Yes

20/06/2012 13 Version 1.1

3. Communication Layers

3.1. Access Technology

Access technology refers to the physical and medium access specification. As described in [2], the Access technology used is based on the ITS-G5 standard ETSI ITS G5 - ETSI ES 202 663 V1.1.0 (2010-01).

3.2. Network Layer

Two main networking layer are considered in the context of eCoMove Project:

- GeoNetworking
- Ipv6 over 3G

Specification of the protocol is provided in [1]

3.3. Transport Layer

The Basic Transport Protocol (BTP) provides an end-to-end, connection-less transport service in the ITS ad hoc network, using the GeoNetworking protocol. Specification of the transport layer for eCoMove is provided in [1].

3.4. Facility Layer

Facility layer refers to the application services for communications, it includes the ecoMessage encoding and decoding and basic communication media handling components. It consists of the following elements:

- ecoMessage API
- Service Communication API
- Announcements API
- Legacy IPv6 interface

Description is provided in [1].

3.5. Minimum level of interoperability

In order to assure interoperability between eCoMove stations, the following level of compliance are considered to be provided by the primary platforms:

- PHY/MAC layer: ETSI ITS G5 ETSI ES 202 663 V1.1.0 (2010-01) [2].
- Network layer: partial ETSI ITS GeoNetworking ETSI TS 102 636-4-1 V1.1.1 (2011-06) [6], consisting of two GeoNetworking packet header types: Single-Hop Broadcast (SHB) and GeoUnicast with Hop Limit set to 1 by the packet source.
- Transport layer: ETSI ITS Basic Transport Protocol ETSI TS 102 636-5-1 V1.1.1 (2011-02) [5].
- Facilities layer messages: ecoMessages specified in eCoMove D2.5 [9] (final version will be D2.13). CAM messages will conform to ETSI TS 102 637-2 V1.2.1 [5]. A revised CAM specification is expected Q3/Q4 2011 and eCoMove will adopt this new revision.

20/06/2012 14 Version 1.1

4. Test Methodology

4.1. Overview

In order to provide evidence of the interoperability of the different platform and the availability of communication facility services are indicated by application requirements, the methodology of test planned consists of the following main category tests:

- 1) Transport layer Interoperability Test
- 2) Facility Layer Interoperability Test

It is distinguished between partner level test and interoperability test. The first is not covered in this test report and is considered to be carried out by each single partner before the interoperability tests. Each partner shall assure that the 4 layer works in its own laboratory. Interoperability tests are planned to guarantee that platforms actually interoperate and that the internal platform operation are conformal with the communication platform specification [1].

4.2. Interoperability Test Plan

This chapter describes the interoperability objectives and expected results. As described in the previous section two interoperability tests are defined:

- 1) T1 Transport Layer Interoperability Test (TL)
- 2) T2 Facility Layer Interoperability Test (FL)

4.3. T1 – Transport Layer Interoperability Test (TL)

	Description		
Objectives	 Test transport communication between stations Test GeoNetworking protocol (Unicast/single hop, broadcast) 		
	Test Access Media interoperability		
Extension	Laboratory test with one unit per participant		
Prerequisite	 Participants shall have tested GeoNetworking Protocol, ITS-M5 access media specification 		
	 At least one unit available for the test 		
	Recording Facilities		
Steps	Set up access media configuration (channel selection)		
	Set up unicast/broadcast messages		
	 Set up recording facility 		
	 Check for announcement of Stations 		
	 Send messages (unicast/broadcast) 		
	 Log exchanged messages 		
Expected results	Successful Station Announcement sending/receiving		
	Successful Message (Unicast/broadcast) receiving/sending		

4.4. T2 – Facility Layer Interoperability Test (FL)

	Description	
Objectives	Test eCoMessage Facility Layer	

20/06/2012 15 Version 1.1

	Test Communication Facility Layer
Extension	 Remote laboratory test
Prerequisite	 Design network test configuration
	 Development and test of ecoMessages suite
	 Development and test of Communication Components
	 Development of test suites
Steps	 Set-up of IPv4/ipv6 network
	 Set-up of the remote configuration
Expected results	 Successful Exchange of ecoMessages
	 Successful Exchange of UTP/TCP/Packets over
	Communication Components.

20/06/2012 16 Version 1.1

5. Transport Layer Interoperability Test

5.1. Introduction

In the present chapter, the definition and the results of the Laboratory test is provided.

5.2. Equipment and Setup

5.2.1. Equipment per provider

NEC:

1 LinkBird + 1 notebook + antennas

O-Free:

1 CSP router + 1 notebook + antennas

5.2.2. Required Hardware/Software

- CCU
 - o IEEE 802.11p radio
 - C2X Networking and Transport software (NEC's C2X-SDK2 and Q-Free's Geonetworking component)
- Test Applications

5.2.3. PHY/MAC Configurations

Parameter	Value
Frequency	5.900 GHz , CCH180 (178) *
Channel bandwidth	20 MHz *
Transmit Power	20 dBm
Radio Bit rate	6 Mbit/s

^{*:} Bandwith and Frequency shall be in accordance to ETSI specification, See section 5.4.1 Frequency and channel bandwidth.

5.3. Lab Tests Definition

5.3.1. Lower Layer / Network Layer tests

Set static GPS position via configuration or configuration tools.

11p box	Latitude	Longitude	GN Address
CSP	48.4	10.000	901 / MAC Address
LinkBird	48.4	10.002	902 / MAC Address

5.3.1.1. Beacon Test

During this test it will be verified that the beacon packets get though over the air using IEEE 802.11 with ETSI G5 definitions.

Beacon tests		
Test	Comment	
LinkBird sending beacons,	Test passed.	

20/06/2012 17 Version 1.1

CSP box receiving them	
CSP box sending beacons,	Test passed.
LinkBird receiving them	

5.3.1.2. SHB Test

The following configurations should be used for triggering an SHB packet:

Type of message	Configuration setting
SHB	Hoplimit = 1

SHB tests		
Test	Comment	
LinkBird sending an SHB packet via a test application with Hoplimit 1, CSP receiving the SHB	Test passed.	
CSP sending a SHB packet via a test application with Hoplimit 1, LinkBird receiving the SHB	Test passed.	

For logs, see Annex

5.3.1.3. Unicast Test

The following configurations should be used for triggering a Unicast packet:

Type of message	Configuration setting	
Unicast	nodeID = 901 / MAC Address	
	nodeID = 902 / MAC Address	

Note: It should be possible to use the MAC address as a destination GN Address.

Unicast tests		
Test	Comment	
LinkBird sending a Unicast	Test passed.	
packet via a test application	A node shall use the MAC address as a GN	
with destination id=902 /	Address.	
MAC Address, CSP		
receiving it		
CSP sending a Unicast	Test passed.	
packet via a test application	A node shall use the MAC address as a GN	
with destination id=901 /	Address.	
MAC Address, LinkBird		
receiving it		

For logs, see Annex

20/06/2012 18 Version 1.1

5.4. Issues or Deviation from Test Plan

5.4.1. Frequency and channel bandwidth

During the test setup there was an issue with the 802.11p channel numbers and channel bandwidth. Conformance with ETSI specification shall be ensured.

5.4.2. Unicast packets

The station shall be able to use the MAC Address as a GN Address.

20/06/2012 19 Version 1.1

6. ETSI Plugtest

ETSI Plugtests was organized in Helmond, the Netherland, from 14th to 18th of November 2011. The event consists in the testing of ETSI specification for both the transport and message format. A detail description of the test was defined according to ETSI plugtest specification [9]. Plugtest has been divided in two parts:

- 1) GeoNetworking Scenarios
- 2) Facility Scenarios

Tests were also divided in Mandatory and Optional.

6.1. Mandatory Tests

1 TD_	GN_	BEA_	_01	Detection	of ne	eighbour

- 2 TD_GN_GBC_01 Broadcasting of CAM messages is correctly handeled
- 3 TD GN GBC 02 DENM message is processed inside its Destination Area
- 4 TD_GN_GBC_03 Number of re-broadcasts is correctly handled during DENM flooding
- 5 TD_GN_GBC_04 DENM message is not processed outside its Destination Area
- 6 TD_GN_GBC_05 Geo-broadcast message caching and DENM expiry handling are correctly implemented
- 7 TD GN DAD 01 Resolution of duplicate Gn address scenario
- 8 TD CAM 01 CAM messages with basicVehicle profile are interoperable
- 9 TD CAM 02 CAM messages with emergencyVehicle profile are interoperable
- 10 TD_CAM_03 CAM messages with publicTransportVehicle profile are interoperable
- 11 TD_CAM_04 CAM messages with basicRIS profile are interoperable
- 12 TD_DENM_01 DENM re-transmissions are correctly received within the DENM lifetime
- 13 TD DENM 02 DENM re-transmissions are not received after the DENM lifetime
- 14 TD_UC_01 CAM messages generate and interpret the vehicle location parameter correctly
- 15 TD_UC_02 DENM messages generate and interpret the vehicle location parameter correctly
- 16 TD_UC_03 DENM messages can include parameters needed by 'Roadworks warning' application
- 17 TD_UC_04 CAM messages can include parameters needed by 'Traffic jam ahead warning' and 'Slow vehicle warning' application
- 18 TD_UC_05 DENM messages can include parameters needed by 'Traffic jam ahead warning'
- 19 TD_UC_06 CAM messages can include parameters needed by 'Car Breakdown warning' application
- 20 TD_UC_07 DENM messages can include parameters needed by 'Car Breakdown warning' application

20/06/2012 20 Version 1.1

6.2. Optional Tests

- 1 TD_GN_FWD_01 DENM message is correctly forwarded to its Destination Area
- 2 TD_GN_FWD_02 DENM message is correctly geo-routed towards its Destination Area
- 3 TD_GN_FWD_03 DENM message geo-routing is correctly handeled when no suitable forwarder exists
- 4 TD DENM 03 DENM information is kept alive as expected during its lifetime
- 5 TD_UC_08 CAM messages can include parameters needed by 'Approaching emergency vehicle' application
- 6 TD_UC_09 DENM messages can include parameters needed by 'Approaching emergency vehicle' application
- 7 TD_UC_10 DENM messages can include parameters needed by 'Weather Warning (Wind)' application
- 8 TD_UC_11 DENM messages can include parameters needed by 'Emergency electronic break lights' application
- 9 TD_UC_12 CAM messages can include parameters needed by 'Post crash warning' application
- 10 TD_UC_13 DENM messages can include parameters needed by 'Post crash warning' application
- 11 TD_UC_14 DENM messages can include parameters needed by 'Obstacle warning' application
- 12 TD_UC_15 DENM messages can include parameters needed by 'Wrong way driving in gas stations' application
- 13 TD_UC_16 CAM messages can include parameters needed by 'Motor cycle warning' application
- 14 TD_UC_17 DENM messages can include parameters needed by 'Slow vehicle warning' application

20/06/2012 21 Version 1.1

6.3. Logical Architecture

The tests were conducted in a bilateral way. Each company tested the implementation against all the other companies.

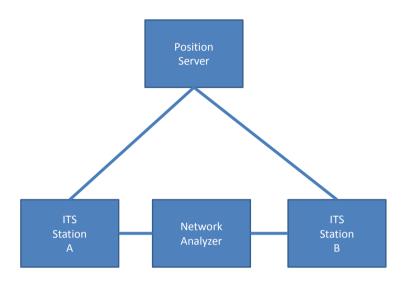


Figure 1 Logical Architecture

6.4. Test Results

Multiple companies joined the test event, including eCoMove partners:

- 1) NEC
- 2) Q-Free
- 3) Peek Traffic

All mandatory tests were performed and passed. Companies representing other European projects were also present and interoperability where also demonstrated with these.

The successful test shows that eCoMove communication platform is compatible with other projects, including Drive and Score@F, both on physical layers, network and transport layers and on CAM and DENM message layer with known limitations¹.

¹ Q-Free platform does not support multi-hop GeoNetworking features, refer to section 3.5 Minimum level of interoperability.

7. Facility Layer Interoperability Test

7.1. Introduction

The eCoMove Interoperability Test 1 aims at testing the interoperability between the different CCU hardware used in the project. During this test the following topics will be covered:

- PHY/MAC verify that packets get trough over the air using IEEE 802.11p with ETSI G5 definitions
- Transmission of Single Hop Broadcast packets
- Transmission of Unicast packets
- Verification of SHB/Unicast payload

For these tests static configurations will be used.

On 24th of January2012 a physical meeting and on 3rd of February 2012 a remote test were performed. List of action points were collected and corrected during the following days followed be a 3rd remote verification meeting.

In the following sections, some details of the test are presented with the test results.

7.2. Communication set up

This section describes the configuration used during the test.

7.2.1. *O-Free*

Q-Free Communication Unit (Q-Free Router) is connected to an application unit (laptop) and a Monitor for verification. The router and laptop units are connected via an Ethernet switch.

NEC Communication Unit (LinkBird) is connected to the application unit (laptop) and to an external monitor unit (laptop) for verification. The units are connected via an Ethernet switch

Anetwork Ethernet switch allows the two communication platform to be connected physically in order to test the eCoMessage over UDP and HTTP. The configuration with the common Ethernet switch was used in the second part of the interoperability test.

7.3. IPv6 Discussion

Although IPv6 was not the focus of the interoperability tests in Heidelberg, NEC and Q-Free discussed on the various possible approach for IPv6 configuration.

20/06/2012 23 Version 1.1

7.4. Verification steps

7.4.1. Check Message ID definition

Message ID (in ItsPduHeader) where checked against relevant ETSI specifications [3] and eCoMove document [8]

and econiove document [8]	
TPEGmessageID	101
TSPDMmessageID	102
VPMmessageID	103
SRMmessageID	104
EcoCAMmessageID	105
SLAMmessageID	106
ITMmessageID	107
SAmessageID	150
CAM	1
DENM	2

7.4.2. Check Message BTP/UDP/HTTP port configuration

Ports were verified against the table defined in [1].

UDPPortGeneric	5001
BTPPortCAM	5000
BTPPortDENM	5005
BTPPortVPM	5100
BTPPortSRM	5101
BTPPortTspdm	5102
BTPPortTPEGM	5103
BTPPortSlam	5104
BTPPortItm	5105
BTPPortEcoCam	5106
SABTPdestinationPort	5150
HTTP	8080

7.4.3. Check other parameters

Other configuration parameters [1]

GNEtherType	0x0707
SARepetitionInterval	2
CAMrepetitionInterval	2
eCoMoveUcHopLimit	1
eCoMoveUcLifetimeMultiplier	0

20/06/2012 24 Version 1.1

7.4.4. Check time stamps

Check time stamp against UTC time. Position is not relevant for the current tests.

7.4.5. Check beacon messages

Beacon messages were correctly received by both parties.

7.4.6. Check ecoMessage over G5 SHB

The following table shows the test held and the results.

Message	Comment	Status	Direction
CAM	Some internal validation rule of the	Ok	Q-Free->NEC:ok
	values shall be met (physical		Q-Free<-NEC:ok
	meaningful values)		
ECOCAM		Ok	Q-Free->NEC:ok
			Q-Free<-NEC:ok
SAM	Table shall be filled in; Use	Ok	Q-Free->NEC:ok
	CalmServiceIdTable Load/Add to		Q-Free<-NEC:ok
	add entries.		
SLAM		Ok	Q-Free->NEC: Ok
			Q-Free<-NEC: X
TPEGM	The size limit of the message shall be	Ok	Q-Free->NEC: ok
	less than 1500 octets.		Q-Free<-NEC: ok
TSPDM		Ok	Q-Free->NEC: ok
			Q-Free<-NEC: ok
VPM		Ok	Q-Free->NEC: Ok
			Q-Free<-NEC: Ok
ITM		Ok	Q-Free->NEC: Ok
			Q-Free<-NEC: X
SRM	No test, this message is revoked from	Not	Q-Free->NEC: n.a.
	the ecoMessage suite.	applicable	Q-Free<-NEC: n.a.

Test marked with X was later resolved and successfully tested later in a separate session using datagram channel.

7.4.7. Check ecoMessage over G5 unicast

Scenario:

One unit send a CAM message and the other unit reply another CAM message using unicast.

Results:

CAM over unicast ok (Q-Free -> NEC) Ok

(NEC -> Q-Free) GN Address

For testing the GeoNetworking addresses has been set manually. Subsequent test has been performed to check GN address compliance.

7.4.8. Check ecoMessages over UDP

Scenario:

A CAM message is sent using a datagram URL. The datagram URL used in the test is:

datagram://168.254.34.0:5001

Results:

NEC -> Q-Free: Ok Q-Free -> NEC: Ok

7.4.9. Check ecoMessages over HTTP

Scenario:

A CAM message is sent using a HTTP url. The address used for the test is: http://168.254.34.0/ecomessages/message

Results:

NEC -> Q-Free: Ok

8. Specific Test Report

8.1. Introduction

In this section specific test report for the communication performance are described.

8.2. Round Trip Time Analysis

In order to measure the transmission time, two units where used and tested into two different situations:

- A) Wired Ethernet: The two application units are connected on the same LAN and can exchange message using the datagram channel
- B) G5 using Communication Router: The two units communicate via the communication unit using the G5 channel

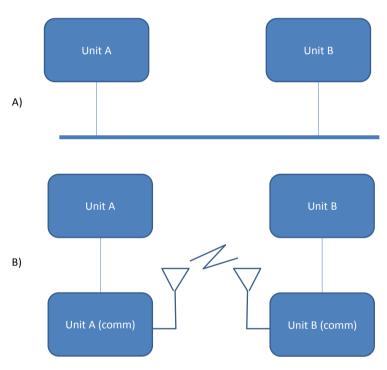


Figure 2 - Round Trip test scenarios

For both the use cases, the unit A is equipped with an application that generates a message, timestamp it, send on the channel and wait for the reply. The unit B is listening and when it receives the message, it just echo it to the same transmitting unit. The unit A then will get the timestamp of the transmitting and receiving event and compute the total elapsed time.

20/06/2012 27 Version 1.1

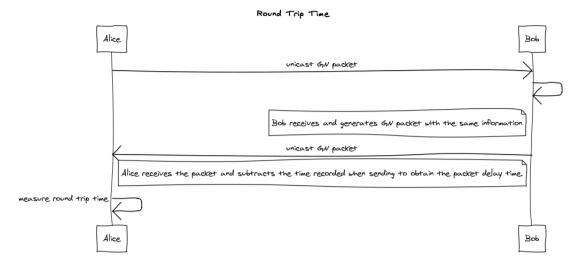


Figure 3 - Round Trip Time sequence diagram

The total time is due to the following reasons:

- 1) The message sending stack in the AU
- 2) The communication sending stack in the AU
- 3) The network delay
- 4) The communication receiving stack in the AU
- 5) The message receiving stack in the AU
- 6) Any load in the AU
- 7) OSGi framework delay as for example due to the EventAdmin

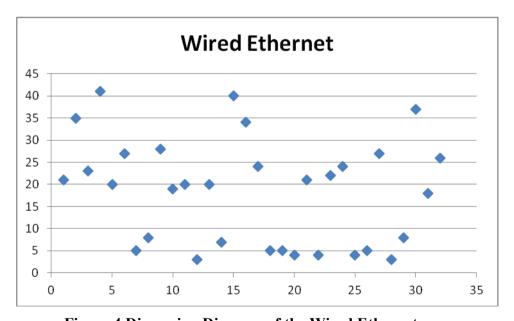


Figure 4 Dispersion Diagram of the Wired Ethernet case

20/06/2012 28 Version 1.1

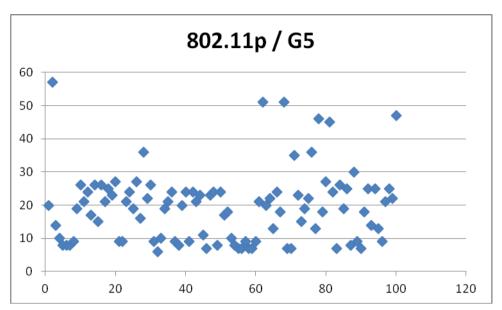


Figure 5 Dispersion Diagram of the G5 case

Table 1 Performance statistics

Round trip time (ms)	Wired Ethernet	G5
Average	18.4	19.4
Standard Deviation	11.8	10.7

20/06/2012 29 Version 1.1

Histogram of rtt_dg

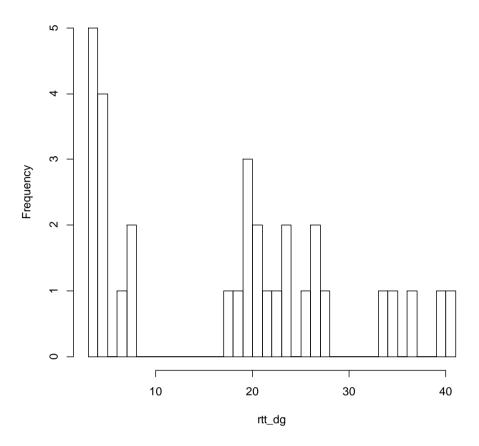


Figure 6 Histogram of the RTT of the Wired Ethernet case

20/06/2012 30 Version 1.1

Histogram of rtt_g5

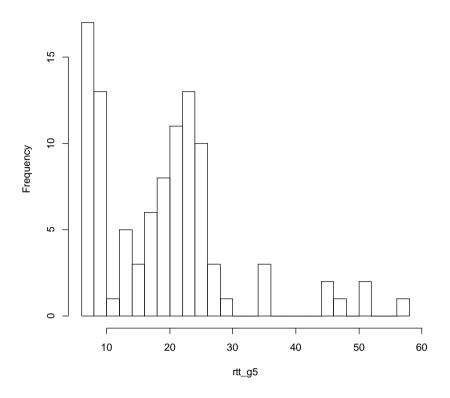


Figure 7 Histogram of the RTT of the G5 case

In Figure 6 and Figure 7 are reported the histogram of the RTT, while Table 1 summarize the performance. The average RTT is below the required time (20ms). The impact of the radio channel is limited (1ms).

20/06/2012 31 Version 1.1

9. Verification plan

With reference to [10], the following table summarize the test results.

Test Scenario ID	Test Short Description	Notes	Result
SP2.4.1-<1>-<1>	Message communication over different media has been performed (GN,UDP,HTTP) Communication API are based on CVIS specification and implementation. EcoMessages are based on the some specification of SimTD.	Interoperability with SimTD, CVIS, SAFESPOT can not be implemented since new features are added. Development and design is based on the aforementioned projects. Application layer is not part of the Communication and EcoMessage levels. Inerrability between platform has been tested in different occasions (ETSI plugtests, mainly and in-lab test)	Passed (platform level)
SP2.4.1-<1>- <2>	Test has been performed with internet connection or via 3G connection.	3G connection has been tested with the communication unit.	Passed (laboratory)
SP2.4.1-<1>-<3>	Different configuration for two way communication has been tested and testing bundled exchanged among implementation. Example bundles are provided to easy application development.	NA	Passed
SP2.4.1-<1>- <3>	Two way communication has been test in laboratory environment	All real environment test will be performed in the integration phase.	Passed (laboratory)
SP2.4.1-<1>- <4>	A test unit start sending ecoMessages via SHB, nearby units receive them	Within the scope of eCoMove only single hop broadcast is defined	Passed (single hop broadcast)
SP2.4.1-<1>-<5>	Vehicle to vehicle single hop broadcast has been tested. Transmission is checked both via logging and by receiving the messages.	Only SHB is considered in eCoMove	Passed (single hop broadcast)

SP2.4.1-<1>-<6>	All communication media (broadcast/geonetworking, UDP, HTTP) for communication between RSUs		Passed
SP2.4.1-<1>-<7>	Not applicable	Depends on the configuration (antenna, position, target area, obstacles), based on ETSI specification. To be tested and tuned onsite. To be carried out in following phases.	Not applicable
SP2.4.1-<1>- <8>	Time is measured between the transmission of a message in one unit and the receiving of the same message in the same unit, echoed from a second unit	A unit is running a echoing application. Time of transmission and receiving is the half the time of round trip.	Passed (see specific section)

Test Scenario ID	Test Short Description	Notes	Result
SP2.4.2-<1>-<1>	EcoCam is generated successfully	Application is not part of the verification of ecoMessages	Passed (only the generation part)
SP2.4.2-<1>-<2>	Among the other message the DENM message contains information on traffic event. Also TPEG message can deliver the traffic situation information	Content is not considered. TPEG message encoding/decoding is not in the scope of ecoMessage activity	Passed (creation of a TPEG and DENM message and transmission)
SP2.4.2-<3>- <1>	eCoMessage specification is based on ETSI specification and formalized using ASN.1		Passed
SP2.4.2-<1>- <3>	eCoMessage specification is based on ETSI specification and includes CAM and DENM messages		Passed
SP2.4.2-<1>- <4>	All positioning information uses WGS84 geographical	Test with EcoMap is not part of the current verification test.	Passed

20/06/2012 33 Version 1.1

coordinate system which is map independent

20/06/2012 34 Version 1.1

Annexes

Annex A: SHB log
An SHB packet send from CSP and received by LinkBird:

An Shib packet send from CSP and received by Linkbird.						
0000 0010 0020 0030	00 00 00 00 01 1c	f ff ff ff 0 08 00 01 c d9 41 00 c 57 e2 e2	00 00 00 0 05 f5 el 0	00 03 01 07 07 01 50 00 00 00 03 01 00 00 00 00 00 00 00 00 00	PAWas df	
An S	HB nacket	send from	LinkBird an	d received from CSP:		
0000 0010 0020 0030	ff ff ff 00 00 04 55 99 1c	ff ff ff 04 00 01 d9 41 00 57 00 00	00 0b 6b 2 00 00 00 0 05 f5 el 0	2e d4 96 07 07 01 50 0b 6b 2e d4 96 cf 64 00 00 00 00 00 00 00	kP kd UA W88 88	
Annex B: Unicast log						
		_	n CSP and re	eceived from LinkBird:		
0000 0010 0020 0030 0040 0050 0060	00 0b 6b 00 00 00 00 01 1c 00 00 00 00 01 1c 00 00 00	2e d4 96 0 08 00 0a d9 41 00 0 a9 00 00 d9 41 00 0 00 00 0b f5 e1 00	00 00 00 0 00 00 00 0 05 f5 el 0 00 00 00 0 05 f5 el 0 6b 2e d4 9	00 03 01 07 07 01 20 00 00 00 00 00 00 00 00 00 00 00 00	k	
A Unicast packet send from LinkBird and received from CSP:						
0000 0010 0020 0030 0040 0050 0060	00 00 00 00 00 00 7f 2f 1c 00 00 9e 7f 2f 1c 00 00 00	0 00 03 01 0 08 00 07 c d9 41 00 c d9 41 00 c d9 41 00 0 00 00 00 6 f5 e1 00	00 0b 6b 2 00 00 00 0 05 f5 e1 0 00 00 00 0 05 f5 e1 0 00 00 03 0	2e d4 96 07 07 01 20 0b 6b 2e d4 96 cf 8c 00 00 00 00 00 00 00 0b 6b 2e d4 96 cf 8c 00 00 00 00 00 00 00 01 cf 8c 7f 2f 1c d9 00 38 38 38 38	kkk	

20/06/2012 Version 1.1 35