

SEVENTH FRAMEWORK PROGRAMME THEME 3
Information and Communication Technologies (ICT)
ICT-2009.3.3 – Flexible, organic and large area electronics

POLARIC

Printable, organic and large-area realisation of integrated circuits

Deliverable 3.3 **OTFTs with gravure printed dielectric**

PUBLIC PART

Responsible beneficiary: Imperial College London

Nature of deliverable¹: R

Dissemination level²: PU

Author: Nikolay Vaklev (Imperial College London)

Date: 2012/04/18

Version: 1.0

Status: Final version approved by the Steering Group

¹ R = Report P = Prototype D = Demonstrator O = Other

² PU = Public, PP = Restricted to other programme participants (including the Commission Services), RE = Restricted to a group specified by the consortium (including the Commission Services), CO = Confidential, only for members of the consortium (including the Commission Services)

Draft revision history (to be sent to the Coordinator)

Version	Date	Author	Summary of main changes and/or status of the version
0.1	13.1.2012	Nikolay Vaklev	1st draft
0.2	13.1.2012	Alasdair Campbell	2nd draft – for distribution
0.3	23.1.2012	Roger Pretot	comment
0.5	28.2.2012	Alasdair Campbell	Final editing from the WP3 leader

Approval for draft version (to be sent to the steering group for approval)

Contributor	Date	Approved by	Summary of main changes and/or status of the version
Coordinator	27.3.2012	Kimmo Solehmainen	No changes, marked as versions 1.0

Approvals for final version (to be submitted to the Commission)

Contributor	Meeting date	Meeting place	Remarks
Steering Group	18.4.2012	E-mail decision	Approved

PUBLIC DESCRIPTION OF THE DELIVERABLE

Here we report the successful development within the POLARIC project of a gravure printable, crosslinkable dielectric for n- and p-type organic thin film transistors (OTFTs). The printable dielectric ink is a proprietary research formulation from BASF. The dielectric is also cross-linkable and photopatternable, making it processable using standard fabrication techniques for structuring like spin-coating followed by photolithography. The dielectric approaches state-of-the-art electrical performance at relatively low thicknesses.

The dielectric was deposited via gravure printing and spin-coating — for comparison — in a bottom-gate, bottom-contact thin-film transistor (TFT) architecture. The study showed that gravure printing produces films of comparable structural and electrical quality to conventional spin-coating. The dielectric has the leakage current and dielectric strength required for TFTs in a display backplane application. The surface roughness is also low enough for good organic semiconductor deposition and crystal growth. n- and p-type OTFTs were tested by spin-coating films of small molecules on to the printed dielectric in the bottom-gate, bottom-contact architecture. The resultant transistors had a similar mobility, on/off ratio, turn-on voltage and hysteresis as control devices with the spin-coated dielectric.

We have therefore demonstrated that gravure is a viable fabrication technique for microelectronics applications, and it can deliver electronic-grade dielectric coatings that approach state-of-the-art.