
Marie Curie Individual Fellowship
FP7 Program

Report 2:

Implementation

Produced by: Raquel Ros Espinoza
Grant agreement Number: 220368
Project title: Adapting Robot Behavior based on Interaction
Project acronym: ARBI
Project starting date: 01 August 2008
Project ending date: 31 July 2008
Project coordinator: Dr. Rachid Alami

Toulouse, August 2010.

In this document we report on the implementation of the concepts described
in report 1 (Concepts and Research Methodology). First we will describe the
knowledge representation of the robot based on an ontology approach. Next,
we detail the geometric reasoning engine which will in turn feed the symbolic
knowledge of the robot. Finally, we present the dialog module in charge of
translating written natural language to robot’s knowledge.

1 Knowledge Representation

We believe that the knowledge model of a robot should include a comprehensive
model of the roles, relationships and context of objects in the environment, as
well as beliefs and intentions of other agents. Moreover, this understanding
must rely on a formal encoding that requires high expressivity while remaining
well suited for machine processing in order to be used by the robot.

1.1 The OpenRobots Ontology

We propose the use of ORO (the “OpenRobots Ontology” server1), a central
knowledge repository that stores, manages, processes and exposes knowledge
for the robot from a symbolic point of view. It internally relies on RDF-
derivate OWL Description Logics2 to formally represent statements on the world
as triples <subject> <predicate> <object>. For example, to represent that
Maria is a human we would include the statement Raquel rdf:type Human.
It uses two open-source libraries: Jena3 for storage and manipulation of state-
ments and Pellet4 first-order logic reasoner to classify, apply rules and compute
inferences on the knowledge base [2].

ORO defines an initial upper ontology for human-aware robotics called Open-
Robots Commonsense Ontology5. This initial ontology contains a set of con-
cepts, relationships between concepts and rules and defines the “cultural back-
ground” of the robot, i.e. the a priori known concepts. Currently, this com-
monsense knowledge is focused on the requirement of human-robot interactions
in everyday environments, but contains as well generic concepts like thing,
object, location and relationships between those. The common-sense ontol-
ogy design relies heavily on the standard OpenCyc6 upper ontology for the con-
cepts naming, thus ensuring a good compatibility with other knowledge bases.
Figure 1 illustrates a simple example with some concepts.

1Project homepage: http://homepages.laas.fr/slemaign/oro-server
2http://www.w3.org/TR/owl2-overview
3http://jena.sourceforge.net
4http://clarkparsia.com/pellet
5http://homepages.laas.fr/slemaign/oro-server/oro-ontology.html
6http://www.opencyc.org

1

Thing

Plant Animal

plant_1 animal_1 animal_2 animal_3

green banana grass whiteyellow

hasColor eats eats hasColor hasColor

Figure 1: Ontology example. Names with first capital letter correspond to
classes; bold names, to properties; and italic names, to instances.

1.2 Finding discriminants

In daily human interactions, where people refer to objects (“Look at the bike”),
sometimes the utterance does not contain sufficient information to be under-
stood correctly. That is, ambiguities concerning the referent can occur (“Which
of the two bikes visible to me does she mean?”). To establish an efficient ex-
change of information and thus communicate meaning, these ambiguities have
to be resolved. Humans employ several basic strategies in order to clarify such
ambiguities, and they do so efficiently and smoothly. First, by applying internal
cognitive strategies (such as visual perspective taking, detailed in Section 2.1);
and only later, when those proved unsuccessful, verbal inquiries come into play,
i.e. asking for additional information in order to clarify the ambiguity.

In the latter case, verbal inquiries, the main question is: what to ask? It is
fundamental to provide the robot with a strategy that efficiently searches the
“right” question to ask. For instance, in the example above, if the two bikes
have different color, querying for this attribute is efficient since the answer will
immediately solve the ambiguity.

We have implemented a set of semantic categorization functions in ORO.
One of them consists in looking for discriminants, i.e. descriptors that allow a
maximum discrimination among a set of individuals. As we describe later on,
this functionality is used to ground the referent during interaction.

We distinguish two types of discriminants. Complete discriminants are those
attributes (or properties) that totally discriminate the set of individuals. In
other words, properties whose values can uniquely identify those individuals.
However, they are not always available. First, because two or more individuals
may share the same value, and second, because not all individuals may share
the same properties. Thus, partial discriminants are those that “better” split
the set of individuals in different subsets based on some criteria.

The algorithm to determine the type of discriminant available (Algorithm 1)
has the following steps (to better follow it, we base its description on the ontol-
ogy example illustrated in Figure 1. We search a discriminant for the following
individuals: plant 1, animal 1, animal 2 and animal 3). First we obtain the
direct properties for all the individuals, i.e. we do not consider all the hierarchy
of properties (line 1). In the example, plant 1 has two superclasses (plant and

2

thing), but we only take the most direct one (the class plant). Next, we com-
pute the number of individuals per property (line 4) and the number of different
values for that property (line 5). If there is more than one different value for
the property (in other words, if not all individuals have the same value), then
we consider that property as a potential discriminant (lines 6 and 7). Finally,
we sort the list of potential properties following two criteria: the number of
individual occurrences (i.e. the most individuals are covered by that property,
the better) and the values occurrences (i.e. the more distinct values, the bet-
ter). The best discriminant corresponds to the first element of the sorted list.
In other words, the class with higher number of occurrences and more variety
in it. If several properties are equal, return all of them.

In our example, the algorithm would return the class name as the partial
discriminant. If we only consider the instances of the class Animal, it would
return two properties equally discriminant: {hasColor,eats}. It should be
noted that this way of proceeding does not respect the open world assumption.
We believe that the robot should only reason bases on his current knowledge.

Algorithm 1 get discriminant(individuals)

1: P ← get properties(individuals)
2: P̂ ← nil
3: for all p ∈ P do
4: nind ← nb ind with prop(p)
5: nval ← nb diff values(p)
6: if nval > 1 then
7: P̂ ← append([p, nind, nval])
8: end if
9: end for

10: sort(P̂)
11: return first(first(P̂))

1.3 Modeling agent’s beliefs

ORO implements separate cognitive models for each agent it knows. Thus, there
is at least one cognitive model for the robot itself, and n additional models, one
per agent. When the robot interacts with a new agent, a separate RDF triple
storage is created to store the robot’s knowledge about the agent’s perception.
For instance, in the case of perspective taking (Section 2.1), we compute the
visibility and spatial information about the world from each agent point of view,
and store it in their own cognitive models. Having separate cognitive models
allows us to store and reason on different models of the world. Thus, allowing
us to easily attribute false beliefs to other agents.

3

1.4 Feeding the ontology

Objects have features (like color, size, shape, texture, etc.) that allow us to
distinguish one from another. Besides, we can also categorize objects in different
classes and refer to their class as a descriptor. For example, a glass is an object
that can be classified based on its purpose in different ways, such as a beer glass,
a wine glass, a champagne glass, and others. However, the wine glass can also
be subdivided in two categories, white wine glass and red wine glass. Hence, in
a scenario with three glasses (a champagne glass, a white wine glass and a red
wine glass), simply asking for “the glass” would bring out ambiguities. Asking
for “the wine glass”, still would produce confusion. The only unambiguous
feature description would be asking for “the red wine glass” instead.

In the current approach, the robot cannot perceive these type of features
by itself (due to limitations in perception, which is not the focus of our work).
Thus, we have to explicitly inform them to the robot. So far, this information is
loaded into the ontology during initialization. However, as we explain in the next
section, all the information coming from geometric reasoning is automatically
computed and sent to the ontology.

2 Geometric Reasoning

This section describes different reasoning mechanisms to provide an abstrac-
tion layer to the decisional layer on top of the geometrical description of the
environment.

To model the environment we use the software platform Move3D [4]. The
kinematic structures of the human and the robot, as well as their positions and
objects’ positions are integrated into this platform to maintain a coherent model
of the real environment. It also allows us to view the visual perspective of the
agents in the world by modeling their visual sensors (eyes for humans, cameras
for robots). Figure 2 illustrates an example environment with a person, a robot
and multiple objects.

The next subsections describe how we compute the different basic skills pre-
sented in Report 1. All this information is stored in the ontology, which in turn
may infer additional information as we explain next. Moreover, the information
concerning specific agents, i.e. perspective taking descriptors, is stored in each
agent’s cognitive kernel in ORO (Section 1.3) allowing the decisional level to
reason about each agents’ beliefs about the world. This way we have a central-
ized source of knowledge, where different components may update or gather the
information as required.

2.1 Perspective Taking

We next describe three skill for perspective taking: visibility, reachability and
spatial. Each skill is computed for each object (or agent) in the environment
with respect to each agent. This information is stored in each agent’s cognitive
model (Section 1.3).

4

(a)

(b)

Figure 2: Scenario: (a) real environment and (b) 3D geometric model of the
environment.

2.1.1 Visibility

In [3] we present a model-based approach for implementing visual perspective
taking abilities. In this approach, 2D perspective projections of the 3D environ-
ment (Figure 3a,b) is used to determine if an object is visible to an agent. We
first obtain the projection of the isolated object (Figure 3c, the blue box), and
we compare it with the “real” projection of the scene which considers occlu-
sions of the evaluated object (Figure 3d, the teddy bear is partially occluding

5

(a) (b)

(c) (d)

Figure 3: (a) An example of the environment, (b) human visual perspective, (c)
free relative projection and (d) visible relative projection.

the blue box). A visibility ratio of the object is then computed by compar-
ing both images. An object is visible to an agent if the ratio is over a given
threshold.

In order to obtain a visual perspective, the actual visibility alone is not
enough. We believe that visual perspective taking ability is not restricted to
what the other person is seeing in a given moment, but also what he “can” see
with a minimal effort (moving the eyes or the head). To model the potential
visibility of an object we compute the visibility ratio while turning the head of
the agent model towards the object.

Moreover, to enrich the visual perspective model and reason on the human’s
focus of attention, the placement of the object respect to the human’s vision is
also computed. According to human’s gaze direction and object’s position, we
compute whether the object is within the human’s focus of attention (FOA), field
of view (FOV) or out of field of view (OOF). Figure 4 illustrates the different
visibility regions around the agent.

Thus, the following information is sent to the ontology for each agent:

if objecti can be seen (directly or moving the head)
→ objecti isVisible true

otherwise, objecti isVisible false

6

FOV FOV

OOF

FOA

Figure 4: Object visibility placements around the agent.

(a) (b)

Figure 5: (a) Reachable points from the human perspective when bending:
yellow, blue and green points correspond to left hand, right hand and both
hands respectively. (b) Human and robot posture for reaching the cup.

2.1.2 Reachability

This ability allows the robot to estimate the agent’s capacity to reach an object,
which is fundamental for task planning. For example, if the human asks the
robot to give her an object, the robot must compute a transfer point where the
human will be able to get the object.

We say that an object or a region is reachable if there is a collision free
posture for the agent where the end-effector is at the center of the object or
region with a given tolerance. A valid posture includes moving the upper-body
or standing, if possible. Figure 5 illustrates the reasoning results for reaching
regions and an object.

The information sent to the ontology is the following (for each agent):

if objecti can be reached (directly or by moving the body)
→ objecti isReachable true

otherwise, objecti isReachable false

7

FRONT

BACK

LEFT

Front
Right

Front
Left

Back
Right

Back
Left

FAR

NEAR
RIGHT

Figure 6: Relative placements around the agent through space discretization.

2.1.3 Spatial

In this work, we use two types of the frames of reference: egocentric (from
the robot perspective) and addressee-centered (from the human perspective).
Thus, given an object and the referent we divide the space around the referent
into four regions: front, left, right and back. The number of these regions are
doubled with the distinction of near and far from the referent in the center.
These regions are separated by arbitrary angle values relative to the referent
orientation. Depending of the task the number of regions can be increased to 16
to include a more precise spatial placement information (e.g. “near front right”,
“far back left”). Figure 6 illustrates an example.

2.2 Gaze following and Focusing Attention

Gaze following is based on the head (for humans) and the cameras (for robots)
orientation. We use motion capture to obtain a precise orientation of the human
head, and then, based on the human model, we can compute where she/he is
looking at. In the previous section we have described how visibility is computed.
Since we are interested in knowing if an agent is actually looking or not to an
object (instead of knowing if an object is potentially visible when turning its
head or torso), we apply the following reasoning:

if objecti is within FOA ∧objecti isVisible true
→ agenti looksAt objecti

Pointing is computed in a similar way to visibility. The idea is to place the
camera at the fingertips of the agent (in the case of the human). Next, we can
apply the same mechanism used for computing visibility, but reducing the angle
of FOV. This way we obtain a cone containing the set of objects pointed by the
agent.

Figure 7 shows different configurations showing a cone in green for both,
gaze and pointing. All objects that fall into this region are considered as either
being looked at or being pointed at by the agent. The information sent to the
ontology is the following:

agenti pointsAt objectj

8

(a)

(b)

Figure 7: (a) Different agents pointing and looking at objects in the environ-
ment. (b) Computation of focuses on.

Based on this information it is easy to infer in ORO through rules the fol-
lowing information:

• focus of attention of an agent:

if agenti pointsAt objectk ∧ agenti looksAt objectk

9

→ agenti focusesAt objectk

• joint attention for two or more agents:

if agenti focusOn objectk → objk isFocusOf agenti
⇒ |{agenti|objk isFocusOf agenti}| > 1

2.3 Symbolic Location Descriptors

Symbolic location descriptors allow the robot to compute spatial relations be-
tween objects in the environment. The system infers symbolic relations between
objects from its 3D geometric world representation. In this work we propose
the use of three basic symbolic relations between each pair of objects. However,
their inverse relations can be automatically computed at the symbolic level, i.e.
through inference based on OpenRobots Commonsense Ontology, enlarging the
symbolic descriptions knowledge easily.

• IsIn: indicates if an object (or an agent) is inside of another object. Its
inverse relation corresponds to Contains. Ex. Bottle IsIn TrashBin.
Its inverse relation corresponds to TrashBin Contains Bottle.

• IsOn: indicates if an object (or an agent) is placed on top of another
object. Its inverse relation is IsUnder7. Ex. Red-box IsOn Blue-box.
Its inverse relation corresponds to Blue-box IsUnder Red-box.

• IsNextTo: tests if an object (or an agent) is next to another object. It has
no inverse relation, but symmetric. Ex. Bottle IsNextTo Cup. There is
no inverse relation, but symmetric, i.e. Cup IsNextTo Bottle.

3 Dialog

In this section we describe the dialog module we have developed in order to
process natural language utterances. Our goal is to allow the user to communi-
cate with the robot in a more natural way, instead of using a very limited set of
utterances. However, our system is still very limited and we mainly focused to
solve the tasks we propose in the game scenarios presented in Report 3. Thus,
given the user input, it grounds the concepts based on the robot’s knowledge
and eventually, translates the discourse into a set of declarative RDF statements
which are sent to the robot’s knowledge, i.e. to ORO.

Figure 8 depicts the components of our dialog system. We have three main
components:

1. parsing : receives the natural language utterances and performs a syntax
analysis. Its output consists on a formal sentence class which is the basic
element to be used through the overall module.

7We consider that there is a physical contact between both objects, although the English
definition of under does not necessarily imply it.

10

Figure 8: Dialog system.

2. interpretation: analyses the concepts in the sentence to align them ac-
cording to the robot’s current knowledge and transforms the sentence into
RDF statements.

3. verbalization: performs the inverse translation, i.e. translate a class sen-
tence into natural language.

We next describe in more detail the Interpretation module since it is the one
of most interest for the project.

3.1 Interpretation

This module is composed of three main components: sentence resolution, con-
tent analysis and statement builder.

The sentence resolution consists of the following three steps:

11

• pronouns (me, you, it) are replaced with speakers’ and objects’ IDs.

• noun phrase resolution consists in grounding the concepts referred to (see
Section 4 for details).

• verbal resolution refers to grounding the verbs and associating the param-
eters (thematic roles) to each.

Thematic roles allow to semantically link a verb to its complements. There
is no general agreement amongst linguists on a comprehensive list of the-
matic roles. Therefore, the granularity of the roles largely varies in the
literature[1]. In this work we only use a small set of roles, which is suffi-
cient enough to represent the verbs we employ.

We store the list of verbs associated to their thematic roles in a file,
along with an optional set of synonyms (helpful to enrich the vocabu-
lary of the robot). The thematic role is composed of: theme, agent and
recipient/receiver.

Let us take a look at an example to better understand the process. Suppose
that the user asks the robot Jido the next task:

“Jido, get me the box on the table.”

The sentence would be transformed at each step as follows:

1. replacing pronoun me:

get human 01 the box on the table.

2. resolving the object id for box on the table:

get human 01 object 123.

3. resolving the verb get (searching for synonyms and retrieving its thematic
role):

give human 01 object 123.

Once the sentence has be aligned to the robot’s knowledge, we are able to
analyze its meaning. In other words, what is the user asking for, is it a question?,
is it an order?, is it providing information? The content analysis is in charge
of this task. Based on this information, the system will either answer to the
human (after querying the ontology for the response), or will include the new
information (statements or goals) into the robot’s knowledge.

In any case, the grounded sentence must be finally transformed into ORO
predicates. The statement builder performs this translation. Thus, from the
above example we would obtain the following predicates (i.e. a new goal for the
robot):

12

human 01 desires situation a3f74

situation a3f74 rdf:type Give

situation a3f74 performedBy myself

situation a3f74 actsOnObject object 123

situation a3f74 receivedBy human 01

which can be read as: human 01 (the user) desires a situation (situation a3f74),
where the situation is described with the thematic role Give, performed by
myself (the robot), acting on the the object 123 and being recieved by human 01.
This set of statements is sent to the robot’s knowledge (ORO) and the supervi-
sion is now in charge of executing the action.

At any moment during the interaction, the robot may need to query the user
for additional information in order to continue the grounding process. In this
case, a history of the dialog must be stored to follow the discourse of the dialog.
If at some point, it fails, it will inform the human, and the history of dialog will
be removed to start the process from scratch all over again (in order to avoid
more confusion or ambiguaty in the discourse).

4 Clarification Algorithm

The ontology is first initialized with the description of the environment rep-
resented by object features as defined in Section 1.4 which is considered the
robot’s initial knowledge about the world (along with the common sense con-
cepts). During interaction, the robot’s knowledge is updated with the incoming
information from the geometric reasoning, i.e. visual perspective taking, spa-
tial perspective taking and symbolic locations descriptors. Based on all this
information, and a given partial (or complete) description of an object (list of
attribute-value pairs), the robot is able to identify the referred object the fol-
lowing way (Algorithm 2). First it obtains all objects that fulfill the initial
description. Based on the result it either succeeds (obtains one single object),
fails (no object with that description could be found) or obtains several objects.
In this latter case, a new descriptor is added to the initial description and the
process starts over again. Failure occur when the description does not match
any object from the robot’s knowledge. Either because the robot’s knowledge
is incomplete (the human refers to an unknown descriptor or descriptor value)
or due to inconsistent information (human’s and robot’s beliefs differ).

Let us take a look at an example to better understand the overall pro-
cess. Suppose there are two bottles on a table, b1, a red glass bottle and b2,
a green plastic bottle. The human asks the robot for a bottle: “Give me the
bottle”. Thus, the initial description corresponds to [(type, bottle)]. Since
both objects fulfill this description, a new descriptor is required. Suppose we
add the color information. In this case, the new description corresponds to
[(type, bottle), (color, red)]. The algorithm ends now indicating that the ob-
ject is identified as b1, the red glass bottle.

In order to add a new descriptor (attribute-value pair) two alternatives are
available: directly asking the human for a new descriptor, or automatically

13

Algorithm 2 clarify(description)

1: objectL← get obj with desc(description)
2: if length(objectL) == 1 then
3: return first(objectL)
4: else if length(objectL) == 0 then
5: return no object found
6: else
7: description← add descriptor(description)
8: return clarify(description)
9: end if

searching a new attribute and ask the human for its value. In the latter case,
we need to automatically find the best discriminant for the current list of objects
being evaluated (objectL in the algorithm). To this end, we use the categoriza-
tion functionalities provided by ORO (Section 1.2).

References

[1] C. J. Fillmore. The case for case. In Bach and Harms, editors, Universals
in Linguistic Theory, 1968.

[2] S. Lemaignan, R. Ros, L. Mösenlechner, R. Alami, and M. Beetz. Oro,
a knowledge management module for cognitive architectures in robotics.
In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010. To appear.

[3] L. F. Marin-Urias, E. A. Sisbot, and R. Alami. Geometric tools for perspec-
tive taking for human-robot interaction. In 7th International Conference on
Artificial Intelligence, 2008. hri, psp.

[4] T. Siméon, J.-P. Laumond, and F. Lamiraux. Move3d: A generic platform
for path planning. In IEEE International Symposium on Assembly and Task
Planning, ISATP, pages 25–30, Fukuoka, Japan, May 2001.

14

