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1. EXECUTIVE SUMMARY 

The project is composed of four phases total. The first three are towards in-plane, whereas the 

last one is towards out-of-plane displacement/distance sensing. In the first two phases, 

PHASE 1 and PHASE 2, normally-off and in the third phase normally-on sensors are 

investigated. While PHASE 1 focuses on large-range low-sensitivity sensors, PHASE 2 

focuses on short-range high-sensitivity ones. This Periodic Report mentions numerous sensor 

designs obtained within the concept of the Project Proposal named “NANO-DISP: Theoretical 

and Experimental Investigation of Synchronous Silicon Nanowire Waveguide Displacement 
Sensors” towards large-range low-sensitivity and short-range high-sensitivity measurement 

characteristics as promised in PHASE 1 and PHASE 2, respectively, in the first two years. 3D 

Finite-Difference Time-Domain (FDTD) Analysis is utilized in the efforts towards numerical 

characterization of the sensors. PHASE 1 involved a single type of sensing mechanism, 

whereas in PHASE 2, two types of mechanisms are considered. Sensors in PHASE 1 are 

based on waveguide tips with elliptical geometry. Results demonstrated that the angle and 

length of tip geometry affect optical characteristics of the sensors under consideration. Among 

all suitable sensors, the highest sensitivity per percent of light intensity is calculated to be 5.74 

nm at 80º tip angle for 4.8 m tip length and 1.5 m tip width, and the lowest sensitivity is 

calculated to be 9.62 nm at 85º tip angle for 12.0 m tip length and 1.5 m tip width. The 

smallest and largest measurement ranges achievable are foreseen to be 674 nm and 1062 nm, 

respectively. 

First type of the sensors studied in PHASE 2 is based on waveguide tips with elliptical 

geometry similar to those in PHASE 1. The novelty for this type, however, is the use of tip 

angles below the Brewster’s. Among all appropriate sensors in this type are those with 4.8 m

tip length and 1.5 m tip width. The highest sensitivity is 1.10 nm per percent of light 

intensity at 10º tip angle, and the lowest sensitivity is 5.74 nm per percent of light intensity at 

50º tip angle. The smallest and largest measurement ranges achievable based on calculations 

are predicted to be 135 nm and 674 nm, respectively. Second type of the sensors investigated 

in PHASE 2 is composed of two identical waveguides with tapered tips with abrupt ends. 

Studies proved that tip width, tip-end size, tip angle and thickness affect optical 

characteristics. Numerical studies on TYPE 2 sensors are still on the way for optimal solution, 

however, so far the highest sensitivity per percent of light intensity is calculated to be 0.97 nm 

at 9.5º tip angle for 100 nm tip-end size, 300 nm thickness and 600 nm tip width, and the 

lowest sensitivity is calculated to be 3.40 nm at 10.5º tip angle for 200 nm tip-end size, 170 

nm thickness and 600 nm tip width. The smallest and largest measurement ranges achievable 

are calculated to be 97 nm and 330 nm, respectively. 

In PHASE 3, short-range high-sensitivity in-plane displacement sensors again, but at 

normally-on state are being investigated in order to clarify their initial state effects on the 

sensing characteristics. Towards this goal, three major types of sensor approaches are studied. 

All sensors utilized in PHASE 3 are based on Electromagnetic Field Modulation (EFM). 

Sensitivities achieved in this phase are from 0.84 nm down to 0.06 nm per percent of light 

intensity within sub-100 nm distances. 

Among major milestones succeeded in the project so far, procurement of two and three 

dimensional design and file conversion software for use in sensor design process, and FDTD 

Analysis software and the workstations for numerical studies can be counted. In addition, 

Micro/Nano Research Centers suitable for successful fabrication of the promised sensors are 

contacted and agreed. Fabrication of the sensor devices is being carried out at the agreed 

cleanroom of Bilkent University, Ankara, Turkey’s National Nanotechnology Research 

Center (UNAM, http://www.nano.org.tr/). Graduate student researchers are hired, educated 
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and trained, and micro/nano-fabrication recipes are clarified after significant number of iterations. 

Several interesting sensors characterized numerically as mentioned above are fabricated in order 

to obtain their mechanical and optical characteristics experimentally for verification. Sensor cores 

where the actual measurement takes place are only 50ȝm × 80ȝm in size. The project 

workpackages are accomplished mostly in the so-called Nanophotonic Systems Research 

Laboratory (NANOPSYS) at Ozyegin University, Istanbul, Turkey and the very small portion of 

the rest very recently at Istanbul Technical University (ITU), Istanbul, Turkey. NANOPSYS 

currently involves three graduate and two undergraduate students as well as the Principal 

Investigator (PI). Design and fabrication of home-made Vapor HF Etching Setup for Device 

Release is realized with the help of the undergraduate students. Finally, fund search for 

procurement of both Mechanical and Optical Sensor Characterization Setups, and their 

installation are completed. When compared to the project’s workplan promised in the proposal, 

owing to the duration it took to grant the support for the procurement of characterization setups 

from a subsequent funding agency, the Scientific and Technological Research Council of Turkey 

(TUBITAK, http://www.tubitak.gov.tr/en/ot/10/), in addition to EC FP7 Marie Curie IRG 

Programme’s Support, the project is delayed approximately by four to six months from the 

experimental point of view. However, the grant needed for the characterization setups are ensured 

properly, and as a result, currently, both mechanical and optical characterization of the sensors 

promised at PHASE 1 are very close to the end, predicted to be completed in about a month. 

Because of the delay in granting subsequent funding, it hasn’t been possible for the research 

group to fulfill and include the experimental characterization results into this Periodic Report at 

hand unfortunately. Nevertheless, in order to make the delay up and to ensure completion of the 

promised workpackages fully in the rest of the project’s total duration of four years, the research 

group had already gone ahead to the second phase, PHASE 2, and third phase, PHASE 3, and 

completed more than that planned in terms of numerical analysis and design. As a result, we 

anticipate that all workpackages will be fulfilled prior to the end of the project term successfully. 

Despite difficulties encountered, PI has succeeded to reach the critical mass within the European 

Union in financial, infrastructural and researcher aspects in order to ensure microfabrication and 

characterization of high-sensitivity embedded optical displacement/distance sensors.  
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Numerous models suitable for large-range low-sensitivity sensors are obtained. Studies 

demonstrated that length of elliptical tip geometry affects optical characteristics. In all tip 

lengths, higher contrasts in transmittance are achieved for tip angles above the Brewster’s, 

whereas smaller values are observed in smaller tip angles than the Brewster’s for the same 

length. In this phase, 22 different sensor designs are learned to be suitable for realization of 

the large-range displacement sensors. For a tip length of 4.8 µm, tip angles of 74º and 80º, for 

6.0 µm, 74º, 80º and 85º, for 7.2 µm, 74º, 80º and 85º, for 8.4 µm, 65º, 70º 74º, 80º and 85º, 

for 9.6 µm, 65º, 70º 74º, 80º and 85º, for 10.8 µm, 80º and 85º, and for 12.0 µm, 80º and 85º 

are understood to be appropriate. Among all suitable sensors, the highest sensitivity per 

percent of light intensity is calculated to be 5.74 nm at 80º tip angle for 4.8 µm tip length and 

1.5 µm tip width, and the lowest sensitivity is calculated to be 9.62 nm at 85º tip angle for 12 

µm tip length and 1.5 µm tip width. Hence, the smallest and largest measurement ranges 

achievable are foreseen to be 674 nm and 1062 nm, respectively. 
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2.1.4. Fabrication 

Displacement sensors are fabricated in order to confirm results of the numerical study 

experimentally. First, sensor geometries are patterned using electron beam lithography (FEI 

Nova NanoSEM 600 with integrated Raith ElphyPlus, FEI&Raith Co.). A positive electron 

beam resist (PMMA 950K, Microchem Co.) is spin coated. The largest dimension of device 

pattern takes place at the anchor of the actuator, 500 µm, whereas, the critical dimension (CD) 

occurs at the spring width, 200 nm. In order to minimize writing time in electron beam 

lithography without compromising pattern quality at both extremes, consecutive two patterns 

are written using mix-match process. The recipe of large and small pattern features utilized in 

the electron beam lithography processes are given in Table 2. 

Table 2. Electron beam lithography parameters. 

Electron Beam Resist Patterning Recipe 

Positive resist 

(PMMA)

Deposition of 

Small Features 

Prebake 180 ºC 2 min 

Spin coat 
750 rpm 10 sec 

1500 rpm 1 min 

Postbake 180 ºC 2 min 

Resist Thickness 100 nm   

Patterning

Small Features 

Acceleration Voltage 30 kV 

Beam Current 69 pA 

Step Size along x, y 10 nm 

Exposure Density 240 µC/cm
2

Write Field Size 50µm × 50µm 

Development

Developing by 1:3 MIBK:IPA 25 ºC 50 sec 

Rinsing by IPA 25 ºC 20 sec 

Postbake 100 ºC 1 min 

Positive resist 

(PMMA)

Deposition of 

Large Features 

Prebake 180 ºC 

Spin Coat 
800 rpm 10 sec 

1700 rpm 1 min 

Postbake 180 ºC 2 min 

Resist Thickness 80 nm 

Patterning 

Large Features 

Acceleration Voltage 10 kV   

Beam Current 2.58 nA   

Step Size along x, y 500 nm   

Exposure Density 100 µC/cm
2
   

Write Field Size 1000µm × 1000µm   

Development

Developing by 1:3 MIBK:IPA 25 ºC 50 sec 

Rinsing by IPA 25 ºC 20 sec 

Postbake 100 ºC 1 min 

The displacement sensor is fabricated on an SOI wafer with 260nm-thick device silicon and 

2 m-thick buried-oxide layer. Process plan is illustrated in Fig. 14. 
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First, electron beam lithography of small features on PMMA is completed. Next, metallization 

with chromium by electron beam evaporation (PVD Vapor 4S E-Beam, Vaksis Co.) for lift-

off is employed. Then, large features are patterned as the second mask layer on PMMA. 

Parameters utilized in both evaporation steps are as presented in Table 3. 

Table 3. Electron beam evaporation parameters. 

Chromium Deposition for Lift-off 

Small Features 

Preparation

Chamber Vacuum 4×10
-6

 Torr 

Chromium Density 7.19 g.cm
-3

K Factor 100

Ionization Energy 2987 kJ.mol
-1

Temperature 20 ºC 

Deposition 

Voltage 35 kV 

Current Beam 25 mA 

Rate 0.03 nm/s 

Thickness 50 nm 

Drying Dry N2 Gas 1 min  

Large Features

Preparation

Chamber Vacuum 5×10
-6

 Torr 

Chromium Density 7.19 g.cm
-3

K Factor 100

Ionization Energy 2987 kJ.mol
-1

Temperature 20 ºC 

Deposition 

Voltage 50 kV 

Current Beam 25 mA 

Rate 0.06 nm/s 

Thickness 30 nm 

Drying Dry N2 Gas  1 min 

Table 4. Inductively-Coupled-Plasma Deep-Reactive-Ion-Etching (ICP-DRIE) parameters. 

Silicon DRIE Recipes 

Recipe I II 

Number of Cycles 25

Passivation Time 6 sec 

Etch Time 5 sec 

Chamber Vacuum 8×10
-3 

Torr 10×10
-3 

Torr

SF6/O2 Flow Rates 20/50 sccm 

RF Platen Power @ Etch/Passivation 
600/20 W 300/10 W 

RF Generator Power @ Etch/Passivation 
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Both matching small and large features laterally in position, and, as discussed meticulously in 

“2.1.5. Vapor HF Setup Design and Fabrication” section of this report, manufacture of Vapor 

HF Etching Setup towards device release are estimated to be completed simultaneously within 

two months. Afterwards, fabricated sensors will be characterized in the mechanical and 

optical setups, which are being procured and installed from a subsequent fund, approximately 

160K Euro for a term of 36 months total, awarded by the Scientific and Technological 

Research Council of Turkey (TUBITAK). As soon as the device release of the sensors is 

completed fully, measurements will be conducted in the characterization setups as given in 

detail in “2.2. Installation of Device Characterization Setups” section of this report. 
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5. SUMMARY

The project is composed of four phases total. The first three are towards in-plane, whereas the 

last one is towards out-of-plane displacement/distance sensing. In the first two phases, 

PHASE 1 and PHASE 2, normally-off and in PHASE 3 normally-on sensors are investigated. 

While PHASE 1 focuses on large-range low-sensitivity sensors, PHASE 2 focuses on short-

range high-sensitivity ones. This Periodic Report mentions numerous sensor designs obtained 

within the concept of the Project Proposal named “NANO-DISP: Theoretical and 

Experimental Investigation of Synchronous Silicon Nanowire Waveguide Displacement 
Sensors” towards large-range low-sensitivity and short-range high-sensitivity measurement 

characteristics as promised in PHASE 1 and PHASE 2, respectively, in the first 33 months of 

the project where change of institution takes place. 3D Finite-Difference Time-Domain 

(FDTD) Analysis is utilized in the efforts towards numerical characterization of the sensors. 

PHASE 1 involved a single type of sensing mechanism, whereas in PHASE 2, two types of 

mechanisms are considered. Three types of sensing mechanisms are introduced in PHASE 3. 

Sensors in PHASE 1 are based on waveguide tips with elliptical geometry. Results 

demonstrated that the angle and length of tip geometry affect optical characteristics of the 

sensors under consideration. Among all suitable sensors, the highest sensitivity per percent of 

light intensity is calculated to be 5.74 nm at 80º tip angle for 4.8 m tip length and 1.5 m tip 

width, and the lowest sensitivity is calculated to be 9.62 nm at 85º tip angle for 12.0 m tip 

length and 1.5 m tip width. The smallest and largest measurement ranges achievable are 

foreseen to be 674 nm and 1062 nm, respectively. 

First type of the sensors studied in PHASE 2 is based on waveguide tips with elliptical 

geometry similar to those in PHASE 1. The novelty for this type, however, is the use of tip 

angles below the Brewster’s. Among all appropriate sensors in this type are those with 4.8 m

tip length and 1.5 m tip width. The highest sensitivity is 1.10 nm per percent of light 

intensity at 10º tip angle, and the lowest sensitivity is 5.74 nm per percent of light intensity at 

50º tip angle. The smallest and largest measurement ranges achievable based on calculations 

are predicted to be 135 nm and 674 nm, respectively. Second type of the sensors investigated 

in PHASE 2 is composed of two identical waveguides with tapered tips with abrupt ends. 

Studies proved that tip width, tip-end size, tip angle and thickness affect optical 

characteristics. Numerical studies on TYPE 2 sensors are still on the way for optimal solution, 

however, so far the highest sensitivity per percent of light intensity is calculated to be 0.97 nm 

at 9.5º tip angle for 100 nm tip-end size, 300 nm thickness and 600 nm tip width, and the 

lowest sensitivity is calculated to be 3.40 nm at 10.5º tip angle for 200 nm tip-end size, 170 

nm thickness and 600 nm tip width. The smallest and largest measurement ranges achievable 

are calculated to be 97 nm and 330 nm, respectively. 

In PHASE 3, short-range high-sensitivity in-plane displacement sensors again, but at 

normally-on state are being investigated in order to clarify their initial state effects on the 

sensing characteristics. Towards this goal, three major types of sensor approaches are studied. 

All sensors utilized in PHASE 3 are based on Electromagnetic Field Modulation (EFM). 

Sensitivities achieved in this phase are from 0.84 nm down to 0.06 nm per percent of light 

intensity within sub-100 nm distances. 

Among major milestones succeeded in the project so far, procurement of two and three 

dimensional design and file conversion software for use in sensor design process, and FDTD 

Analysis software and the workstations for numerical studies can be counted. In addition, 

Micro/Nano Research Centers suitable for successful fabrication of the promised sensors are 

contacted and agreed. Fabrication of the sensor devices is being carried out at the agreed 
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cleanroom of Bilkent University, Ankara, Turkey’s National Nanotechnology Research Center 

(UNAM, http://www.nano.org.tr/). Graduate student researchers are hired, educated and trained, 

and micro/nano-fabrication recipes are clarified after significant number of iterations. The project 

workpackages are completed and accomplished in the so-called Nanophotonic Systems Research 

Laboratory (NANOPSYS) mostly at Ozyegin University and the very small portion of the rest 

very recently at Istanbul Technical University (http://www.itu.edu.tr/), Istanbul, Turkey. 

NANOPSYS currently involves three graduate and two undergraduate students as well as the 

Principal Investigator (PI). Design and fabrication of home-made Vapor HF Etching Setup for 

Device Release is realized with the help of the undergraduate students. Finally, fund search for 

procurement of both Mechanical and Optical Sensor Characterization Setups, and their 

installation are completed. When compared to the project’s workplan promised in the proposal, 

owing to the duration it took to grant the support for the procurement of characterization setups 

from a subsequent funding agency, the Scientific and Technological Research Council of Turkey 

(TUBITAK, http://www.tubitak.gov.tr/en/ot/10/), in addition to EC FP7 Marie Curie IRG 

Programme’s Support, the project is delayed approximately by four to six months from the 

experimental point of view. However, the grant needed for the characterization setups are ensured 

properly, and as a result, currently, both mechanical and optical characterization of the sensors 

promised at PHASE 1 are very close to the end, predicted to be completed in a month. Because of 

the delay in granting subsequent funding, it hasn’t been possible for the research group to fulfill 

and include the experimental characterization results into this report at hand unfortunately. 

Nevertheless, in order to make the delay up and to ensure completion of the promised 

workpackages fully in the rest of the project’s total duration of four years, the research group had 

already gone ahead to the second phase, PHASE 2, and third phase, PHASE 3, and completed 

more than that planned in terms of numerical analysis and design. As a result, we anticipate that 

all workpackages will be fulfilled prior to the end of the project term successfully. Despite 

difficulties encountered, PI has succeeded to reach the critical mass within the European Union in 

financial, infrastructural and researcher aspects in order to ensure microfabrication and 

characterization of high-sensitivity embedded optical displacement/distance sensors.  
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