Scheme 1. Metal-catalysed benzylic fluorination

(a) Iron(II)-Catalyzed Benzylic Fluorination [ref. 5]

(b) Palladium(II)-Catalyzed Fluorination of Quinoline [ref.9]

(c) Palladium-Catalysed Hydrofluorination of Alkenylarenes (my project)

Table 1. Hydrofluorination of styrene 1a

Entry ^[a]	F⁺ source (equiv.)	H ⁻ source (equiv.)	Solvent (ml)	Conv.(%) ^[b]	2a(%) ^[b]	3(%) ^[b]
1	I (2)	$i Pr_3 SiH(2)$	MeCN (2)	>99	0	23
2	II (2)	$i Pr_3 SiH(2)$	MeCN (2)	23	11	12
3 ^[c]	III (2)	$i Pr_3 SiH(2)$	DCM (2)	72	16	28
4	IV (2)	$i Pr_3 SiH(2)$	MeCN (2)	>99	38	0
5 ^[d]	IV (2)	$i Pr_3 SiH(2)$	MeCN (2)	0	0	0
6	IV (2)	-	MeCN (2)	0	0	0
7	IV (2)	$PhSiH_3(2)$	MeCN (2)	95	0	31
8 ^[e]	IV (2)	$NaBH_4(2)$	MeCN (2)	97	18	48
9	IV (2)	$Bu_3SnH(2)$	MeCN (2)	9	traces	0
10	IV (4)	$i Pr_3 SiH(2)$	MeCN (4)	>99	54	0
11	IV (4)	$Ph_3SiH(2)$	MeCN (4)	>99	37	0
12	IV (4)	$Et_3SiH(2)$	MeCN (4)	>99	70	0
13	IV (3)	Et ₃ SiH (1.5)	MeCN (4)	>99	69	0

[a] Reaction performed in 0.1 mmol scale, at 0°C in 2.0 ml of MeCN with 2 equiv. of F^+ source, 2 equiv. of iPr_3SiH and 10 mol% of Pd(PPh_3)₄; [b] Determined by ¹H NMR and ¹⁹F NMR using 1-fluoro-3-nitrobenzene as an internal standard; [c] Reaction performed in DCM at -40°C; [d] Reaction performed in absence of Pd(PPh_3)₄; [e] NaBH₄ was added in two portions in 4h.

	R R (3.0 equiv.) 1b-v	Pd(PPh ₃) ₄ (10 mol%) F Et ₃ SiH (1.5 equiv.) R MeCN, 0°C 2b-v	, R'
Entry ^[a]	Substrate	Product	Yield (%) ^[b]
1 ^[c]	1b	F 2b	58
2	le	F 2c	46
3 ^[c]	1d	F 2d	43
4	1e COOMe	F 2e COOMe	58
5 ^[c]	F If	F 2f	55
6 ^[c]	F ₃ C 1g	F ₃ C	72
7 ^[c]	Br Ih	Br 2h	78
8	EtOOC	EtOOC 2i	64
9	NC 1j	NC Zj	70
10	O ₂ N 1k	O_2N	61
11 ^[c]	0, 11	O 21	76

Table 2. Substrate Scope for Hydrofluorination^[a]

[a] Reaction conditions: 0.1mmol scale reaction with 4 ml of MeCN. Reaction time: 2h; [b] Yields determined by 19 F NMR using 1-fluoro-3-nitrobenzene as an internal standard; [c] Reaction performed in CD₃CN.

Scheme 2. Proposed catalytic cycle

Scheme 3. Deutherium-labelled experiments. Conditions: (i) $Pd(PPh_3)_4$, 10 mol%, Selectfluor (3 equiv) Et₃SiD (1.5 equiv), CH₃CN, 0 °C, 2 h.

Scheme 4. Oxidative fluorination of palladacomplexes C1 and C2

