This site has been archived on
The Community Research and Development Information Service - CORDIS
Information & Communication Technologies

Apply now What about you?

Help us keep your project up-to-date by letting us know about your latest achievements, media presence or any changes in the composition of your consortium. Click here (email removed) to send us an email.

FET Young Explorers Media coverage


CURVACE - Curved Artificial Compound Eyes

 
CURVACE
Coord inated by Ecole Politechnique Federale de Lausanne, Switzerland
7th Framework programme
STREP
2009 - 2013
EU contribution of 2M€
 
 
In this project we intend to design, develop, and assess artificial compound eyes, which will be composed of microlens arrays arranged on curved and flexible surfaces where each microlens will be integrated with one or more aVLSI adaptive photoreceptors. The output of these artificial compound eyes will be processed by adaptive vision filters implemented in programmable devices, such as microcontrollers or FPGAs, for fast extraction of motion-related information. We call these integrated systems CURVed Artificial Compound Eyes (CURVACE). Compared to conventional cameras, artificial compound eyes will offer a much larger field of view in a smaller size and weight, less distortion, less aberration, and less blur because the distance between the optical surface and the photoreceptors will be constant over the entire field of view. Furthermore, some versions of the artificial compound eyes will offer space within the convexity for embedding processing units, battery, or additional sensors that are useful for motion-related computation. In order to reach the desired goals, we will take leverage from the novel combination of optic fabrication, neuromorphic engineering, micro-electronics in bendable surfaces, and insect-inspired active vision and motion detection. We will adopt a progressive approach by developing three versions of artificial compound eyes – cylindrical, spherical and tape -- that will allow us to incrementally tackle the technical and scientific challenges and at the same time develop different prototypes that will suit the needs of different applications. In addition to a full characterization of the CURVACE prototypes for their visual processing abilities, we will also assess their added value in applications such as navigation of micro flying robots and wearable sensing.