This site has been archived on
The Community Research and Development Information Service - CORDIS
Information & Communication Technologies

Apply now What about you?

Help us keep your project up-to-date by letting us know about your latest achievements, media presence or any changes in the composition of your consortium. Click here (email removed) to send us an email.

FET Young Explorers Media coverage

No news submitted.


GOSPEL - Governing the speed of light

 
GOSPEL
Coord inated by Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Italy
7th Framework programme
STREP
2008 - 2011
EU contribution of 2.1M€
 
 
The GOSPEL project aims at developing new, highly effective technologies for enabling slow and fast light propagation as a tunable feature in photonic devices. In fact, controlling the speed of light offers a solution to a necessary, and often missing, functionality in broadband ICT systems: a time-delay/phase-shift line. The proposed research will address three slow and fast light device platforms: linear and nonlinear semiconductor photonic crystal waveguides with position controlled embedded quantum dots, active semiconductor waveguides based on quantum dots and advanced, specifically engineered optical fibers. These technologies will be harnessed in microwave and millimeter wave applications, such as: true time delay antenna feed systems for radars and ultra wide band wireless communication; complex microwave filters; high spectral purity opto-electronic oscillators and electro optical sampling systems. This project gathers world leading experts in microwave photonics and semiconductor and fiber technologies, under a unified vision of the role that slow and fast light can play in advanced microwave applications. The project tackles several key challenges of the 7th Framework Work programme in the ICT domain and represents a significant step towards the removal of a major roadblock, i.e. the lack of practical, tunable, broadband, low distortion time-delay/phase-shift lines for microwave signals. This elemental component, besides enabling several applications, can ease the convergence of photonics and electronics and can attribute new functions to photonic devices. The proposed fundamental research will produce new results in multi-disciplinary topics like semiconductor physics, quantum dots, photonic crystal design and fiber technology and it will also represent a significant advancement across many sectors of ICT.