This site has been archived on
The Community Research and Development Information Service - CORDIS
Information & Communication Technologies

Apply now What about you?

Help us keep your project up-to-date by letting us know about your latest achievements, media presence or any changes in the composition of your consortium. Click here (email removed) to send us an email.

FET Young Explorers Media coverage

No news submitted.

 

Opportunity - Activity and Context Recognition with Opportunistic Sensor Configurations

 
Opportunity
Coord inated by Eidgenossische Technishce Hoschule Zurich, Switzerland
7th Framework programme
STREP
2009 - 2012
EU contribution of 1.5M€
 
 
OPPORTUNITY picks up on the very essential methodological underpinnings of any Ambient Intelligence (AmI) scenario: recognizing (and understanding) context and activity. Methodologies are missing to design context-aware systems: (1) working over long periods of time despite changes in sensing infrastructure (sensor failures, degradation); (2) providing the freedom to users to change wearable device placement; (3) that can be deployed without user-specific training. This limits the real-world deployment of AmI systems. We develop opportunistic systems that recognize complex activities/contexts despite the absence of static assumptions about sensor availability and characteristics. They are based on goal-oriented sensor assemblies spontaneously arising and self-organizing to achieve a common activity/context recognition goal. They are embodied and situated, relying on self-supervised learning to achieve autonomous operation. They makes best use of the available resources, and keep working despite-or improves thanks to-changes in the sensing environment. Changes include e.g. placement, modality, sensor parameters and can occur at runtime. Four groups contribute to this goal. They develop: (1) intermediate features that reduce the impact of sensor parameter variability and isolate the recognition chain from sensor specificities; (2) classifier and classifier fusion methods suited for opportunistic systems, capable of incorporating new knowledge online, monitoring their own performance, and dynamically selecting most appropriate information sources; (3) unsupervised dynamic adaptation and autonomous evolution principles to cope with short term changes and long term trends in sensor infrastructure, (4) goal-oriented cooperative sensor ensembles to opportunistically collect data about the user and his environment in a scalable way. The methods are demonstrated in complex opportunistic activity recognition scenarios, and on robust opportunistic EEG-based BCI systems.