Aerial Robots

Yasmina Bestaoui, Université d’Evry
François Derkx, Laboratoire Central des Ponts et Chaussées
Pedro Castillo, Heudiasyc, CNRS
Hervé Kuhlmann, Ecole Normale Supérieure de Cachan
France

9/10 June 2010
Applications

Civil Applications

• Wildfire Mapping Needs
• Agricultural Monitoring
• Disaster Management
• Highway Speed Control
• Telecommunications
• Weather Monitoring
• Aerial Imaging/Mapping
• Thermal Infrared power line surveys
• Environment Monitoring....

Monitoring of Flood Barriers and Bridges: Facts

• Surveying every 3, 6, 9 years
• Potentially dangerous for the inspectors, very specialized team
• Expensive, (>15k€ for 7 days of monitoring of a 60m long bridge)
• Traffic shutdown
AMBITION

- Improve operational efficiency
- Increase the frequency of operations
- Improve staff safety
- Easy way of testing in normal use or emergency
- Sustainability of testing (no traffic shutdown)
- Cost-Effectiveness
Proposed Solution: Monitoring By Aerial Hovering Robots

- Unmanned Aerial Vehicles: used with success in the military area
- Increased use in Civil area
- Missions more efficient and less expensive than with manned aircraft
- Alternative to manned visual inspection

- Multidisciplinary research:
 - Information and Communications Technologies
 - Civil Engineering
 - Aeronautical Engineering
 - Energy
 - Integration in the National Airspace
 - Societal Acceptance
TECHNICAL RESEARCH IN ICT

- Aerial Robot in a windy environment
 - Autopilot
 - Flight Management System
 - Mission Planning
- Vision Device dedicated to Flood barriers and Bridges: gyro-stabilized turret
 - Limiting vibrations by passive filtration
 - Active control of the optical sensor
- A chain of treatments to follow the evolution of defects, the data processing and presentation defects
 - Real-time visualization of the bridge for the overall tracking disorders and navigation control vector optimizing the real-time positioning
 - Processing for an image metrologically exploitable
 - Reconstruction of defects on multiple photos
 - Identification of the disorder compared with a database
 - Location of disorder on the structure
 - Development of the disorders....
IMPACT (2020+, B€)

• In France
 – Flood barriers (> 10.000Km)
 – Bridges 22000 (>60m), 80000 (<60m), 100000 (<20m)...

• In Europe (civil engineering structures)
 – Belgium: > 5000 bridges
 – Finland: > 15000
 – Germany: > 35000
 – Norway: > 17000
 – Spain: > 15000
 – Netherlands: > 5000Km