Identifying the problem

Scenario to be solved

- relay, cooperative, ad-hoc wireless communications
 - no centralized authority
- many nodes and many terminals with high area density
 - dense interfering environment
- performance criteria
 - throughput, energy/spectrum efficiency, reliability, latency

Classical solution — problems

- interference = major problem
 - interference limited system
- orthogonal resource slicing reduces throughput
- complicated routing signaling overhead & latency
DIWINE Core Concept — Virtual Cloud Relay

Core concept elements

- dense massively air-interacting (relay) nodes in the self-contained cloud
- dense interaction is advantage, interference not avoided but exploited
- stochastically defined intra-cloud structure and connectivity
- terminals PHY/MAC interface to the cloud is simple and uniform
Progress beyond State-of-the-Art

Reserch and Technical Novelty

- Wireless cloud serves as virtual relay to the simple and uniform terminals
 - cloud is self-contained entity with distributed internal processing
 - cloud does not reveal its internal structure/PHY to the terminals

- Wireless Network Coding paradigm inside the stochastically defined cloud
 - transformed data are flooded through the cloud (no routing of individual data)
 - multi-hop stochastically defined networks are exploited in the cloud
 - compare: current WNC requires
 - full knowledge of the end-to-end connectivity structure at all nodes
 - all nodes with individually crafted processing
 - “hand-made” design for very small number of interacting nodes

- Cloud relays/nodes are dense
 - massively parallel signal interactions
 - imperfect/unreliable knowledge of the interacting signal structure and topology
 - interference alignment and interference neutralization
Utility Targets (UT)

Measurable and evaluable project achievements

- **UT1** Spectrum and energy efficiency, data throughput
- **UT2** Robustness, diversity, reliability and weak system state information impacts
- **UT3** Latency, connectivity and signaling overhead
- **UT4** Distributed self-adaptation (response time, side information, overhead)
- **UT5** Dense interfering nodes issues (exploitation of friendly interference)
- **UT6** Topology specific functionality
- **UT7** Intra-node and intra-cloud inference and processing (contents processing)

UT1-4 mostly quantitative, UT5-7 mostly qualitative or capability addressing
DIWINE research is generic and applicable in wide range of scenarios

Proof-of-concept core application cases

- **System-Level-Simulation** — *Advanced Cloud Scenarios*
 - “glue” between the theory and practical verification
 - allows advanced scenarios

- **HW demonstrator #1** — *Smart Meter Network*
 - natural environment for demonstrating DIWINE concepts
 - cloud virtual self-contained relay
 - distributive processing
 - direct impact on energy and resource savings
 - direct connection to “Smart Cities” platform

- **HW demonstrator #2** — *Critical Industrial Monitoring and Control*
 - verifies DIWINE concepts in terms of
 - robustness
 - critical reliability/latency
 - first project to demonstrate cloud principles in critical industrial scenarios