The OMP project advances the state of the art in the following directions. It developed and disseminated an innovative and extensible computing tool infrastructure consisting of static and dynamic composition tools and methodologies, providing component-based software engineering tools, a dynamic compiler for parallel architectures, as well as memory profiling tools and proofs of concept in parallel programming models and program control dependency analysis. It defined and implemented a novel media infrastructure consisting of enhanced standard Application Programming Interface based on OpenMAX to support resource and context awareness, and it prototyped a standards-based run-time environment with associated resource management methodologies. The research results are being used in current research projects, including the 2PARMA and TERAFLUX projects.

Positioning in global context
The project has led to top-level publications, as well as providing the base for new projects (see above).

Contribution to standardization and interoperability issues
A contribution to the OpenMAX standard has been proposed, introducing quality levels and their management.

Target users / sectors in business and society
The target users of the tools and methodologies provided are system integrators and technology providers, as well as software and application developers.

Overall Benefits for business and society
The availability of project products as free software provides reference implementations and
tools that are freely available, thus reducing significantly the effort required to enter the market or start up a research project. The cost of producing such software from scratch would be in excess of 4 person/years for the ILDJIT dynamic compiler. Component-based software engineering tools are also able to reduce the development time for parallel implementation of media tools.

Examples of use cases
The integration of project results into the Bellagio OpenMAX, Scalable Video Coding reference implementations, and dynamic compilation open source tools provide immediate examples of use of project results in the real world.

Achievements
The following research products are the key achievements of the OMP project.

ILDJIT
A dynamic compiler for the bytecode language defined by the ECMA-335 standard. It implements an adaptive compilation strategy to hide compilation latencies.

Current maturity status is *beta* release.

Project home page: http://sourceforge.net/projects/ildjit

Octopus
A media engine for coordinating audio and video streams. It uses Gstreamer or OpenMAX IL components for individual operations.

Current maturity status is *beta* release.

In the context of split compilation, two different tools have been produced, demonstrating *split register allocation* and *split vectorization*. The contacts for the split register allocation implementation in Java are Albert Cohen and Boubacar Diouf (Albert.Cohen@inria.fr and Boubacar.Diouf@inria.fr).

Current maturity status is *beta* release for both products. The contact for split vectorization in the ECMA-335 bytecode is Erven Rohou (Erven.Rohou@inria.fr).