Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Investigating Functional Dynamics in Proteins by Novel Multidimensional Optical Spectroscopies in the Ultraviolet

Objective

Proteins perform their biological function following specific sequences of events. During these dynamical paths, highly non-trivial cooperative interactions occur. Ultimately, this is the origin of the emerging collective behavior that makes proteins the most sophisticated existing molecular machines. This complex network of processes covers a wide range of timescales, from few fs to ms, and distances, from atoms to large protein domains.
Even the most recent experimental techniques generally provide ns-to-us averaged structural and dynamical information, often in non-physiological conditions. To access simultaneously atomic time and length scales would unveil the elementary conformational steps constituting a functional event and their temporal evolution.
I propose to extend emerging multidimensional ultrafast optical spectroscopic techniques to the deep ultraviolet. These techniques are the analogue of multidimensional Nuclear Magnetic Resonance methods and are able to provide structural information exploiting electric dipole couplings but with fs temporal resolution. The novel extension to ultraviolet, that I shall implement, will open the possibility to exploit the optical absorption of aromatic amino-acid residues with the great advantage of studying wild type proteins. In this way, all drawbacks due to artificial labeling will be ruled out. I will use this new technique to study dynamic-assisted long range electron transfer in copper proteins and enzyme regulation in hemoglobin. These two proteins of great importance from a biological point of view have been chosen because their functions are a clear manifestation of cooperative phenomena. On a long term prospective this methodology will be a universal tool applicable to any wild type protein containing aromatic amino acids.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITAET BERN
EU contribution
€ 1 473 600,00
Address
HOCHSCHULSTRASSE 6
3012 BERN
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Bern / Berne
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0