Objective
Silicon nanocrystals (SiNCs) have gained much attention in the last few years because of their remarkable optical and electronic properties, compared to bulk silicon. These unique properties are due to quantum confinement effects and are thus strongly dependent on the nanocrystal size, shape, surface functionalization and presence of defects.
The aim of the present project is the coupling of SiNCs with photo- and electroactive molecules or multicomponent systems, like dendrons, to build up a new class of hybrid materials to be employed in the field of light-to-electrical energy conversion (solar cells).
SiNCs possess several advantages with respect to more commonly employed, quantum dots, which usually contain toxic and rare metals like lead, cadmium, indium, selenium: a) silicon is abundant, easily available and essentially non toxic; b) silicon can form covalent bonds with carbon, thereby offering the possibility of integrating inorganic and organic components in a robust structure; c) absorption and emission can be tuned across the entire visible spectrum from a single material, upon changing the nanocrystal dimension.
This project will address the understanding of the fundamental photophysical and electrochemical properties of SiNCs, and their electronic interactions with the functional coating units. Taking advantage of the acquired knowledge, the project will then be devoted to the implementation of these hybrid materials as light-harvesting and charge transport components in photoelectrochemical cells. PhotoSi is expected to lead to solar cells with high efficiency (superior electronic properties of the hybrid material), low cost (the amount of the nanostructured material is significantly reduced compared to conventional Si cells), and low environmental impact (Si is essentially non toxic, and new less-energy demanding synthetic methodologies will be explored).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology nanotechnology nano-materials nanocrystals
- engineering and technology materials engineering coating and films
- natural sciences chemical sciences inorganic chemistry metalloids
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-StG_20101014
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
40126 Bologna
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.