Objective
In this project I will exploit new possibilities opened up by the recent succesful demonstration of our ability to create electron vortex beams in a transmission electron microscope. Electron vortex beams carry a helical phase and angular momentum around their propagation axis. They form the counterpart of optical vortex beams that were invented almost 20 years ago and have lead to many exciting new applications in optics.
In preliminary experiments with electron vortices I have demonstrated (Verbeeck et al. Nature, 467,301 (2010)) their usefulness for magnetic state mapping. This property makes them very desirable for solid state physics and materials science since no other tool exists that can map the local magnetisation inside materials with atomic scale resolution. We aim to develop atomic resolution magnetic state mapping and apply it to gain insight in spintronics devices as well as in topological insulators. We will follow two routes to this end, one using the combination of electron vortex beams and electron energy loss spectroscopy (EELS) and another making use of the Aharanov Bohm effect in elastic scattering.
Preliminary experiments proof that both routes are feasible and a wealth of interesting physics is ready to be explored.
We will also explore the potential of electron vortex beams to manipulate nanoparticles and transfer angular momentum from the electron beam to these particles. This would open up the road to assemble and create nanoscale devices and to study the fundamental laws that govern the interaction between vortex beams and particles with different physical properties.
I believe that this highly creative and innovative idea, combined with access to a state of the art transmission electron microscope and a young PI with a proven track record is combined into a project proposal entirely in the spirit of the ERC starting grants.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences condensed matter physics solid-state physics
- engineering and technology nanotechnology nano-materials
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-StG_20101014
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
2000 Antwerpen
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.