Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Membrane-modified Electrodes to study Membrane Enzymes

Objective

Electrochemical investigations of biological processes have provided a wealth of information on the structure-function relationship of redox enzymes, while the underlying technology has formed the basis for biosensors such as the extremely successful glucose biosensor. However, many of today’s applications do not impose molecular control on the electrode-protein interaction, which limits their full potential in biosensing, biological photo harvesting, biofuel cells and energy storage. While electrochemistry of globular redox-enzymes is limited by poor control of the surface-protein interface, the absence of control with membrane proteins has made it impossible to study them electrochemically. This in spite of the huge importance of membrane enzymes for biosensing and energy generation.
To solve these problems, I have combined the state-of-the-art in surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop membrane-modified electrodes with full control of protein-electrode interactions. In this ERC Starting Grant proposal I aim to consolidate this research by applying this methodology to hydrogenases and light-harvesting reaction centres, both of which have promising applications in biofuel cells. Second, I will show how the combination of our membrane-modified electrodes with fluorescence spectroscopy provides an exciting application in single enzyme research, a challenge that has been met for only a handful of membrane proteins. Single-enzyme kinetics of a proton-pumping haem-copper oxidase will provide new insights into the molecular mechanism of proton-pumping. My long term vision of this work is to create electrodes that communicate with living cells, which will allow us to study bioenergetics in living cells and pave the way to harness bioenergy in biofuel cell applications. In this proposal I describe a first start in this ambitious vision by connecting my electrodes to living bacteria via their cytoplasmic membrane.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY OF LEEDS
EU contribution
€ 1 650 829,00
Address
WOODHOUSE LANE
LS2 9JT Leeds
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Leeds
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0