Objective
Electrochemical investigations of biological processes have provided a wealth of information on the structure-function relationship of redox enzymes, while the underlying technology has formed the basis for biosensors such as the extremely successful glucose biosensor. However, many of today’s applications do not impose molecular control on the electrode-protein interaction, which limits their full potential in biosensing, biological photo harvesting, biofuel cells and energy storage. While electrochemistry of globular redox-enzymes is limited by poor control of the surface-protein interface, the absence of control with membrane proteins has made it impossible to study them electrochemically. This in spite of the huge importance of membrane enzymes for biosensing and energy generation.
To solve these problems, I have combined the state-of-the-art in surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop membrane-modified electrodes with full control of protein-electrode interactions. In this ERC Starting Grant proposal I aim to consolidate this research by applying this methodology to hydrogenases and light-harvesting reaction centres, both of which have promising applications in biofuel cells. Second, I will show how the combination of our membrane-modified electrodes with fluorescence spectroscopy provides an exciting application in single enzyme research, a challenge that has been met for only a handful of membrane proteins. Single-enzyme kinetics of a proton-pumping haem-copper oxidase will provide new insights into the molecular mechanism of proton-pumping. My long term vision of this work is to create electrodes that communicate with living cells, which will allow us to study bioenergetics in living cells and pave the way to harness bioenergy in biofuel cell applications. In this proposal I describe a first start in this ambitious vision by connecting my electrodes to living bacteria via their cytoplasmic membrane.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry
- natural sciences chemical sciences organic chemistry
- engineering and technology industrial biotechnology biomaterials biofuels
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-StG_20101109
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.