Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Geometry and Analysis of Group Rings

Objective

Eversince, the study of discrete groups and their group rings has attracted researchers from various
mathematical branches and led to beautiful results with proofs involving fields such as number theory,
combinatorics and analysis. The basic object of study is the structure of the group G itself, i.e. its subgroups, quotients, etc. and properties of the group ring kG with coefficients in a field k.

Recently, techniques such as Randomization and Algebraic Approximation have lead to fruitful insights.
This project is focused on new and groundbreaking applications of these two techniques in the
study of groups and group rings. In order to illustrate this, I am explaining how useful these techniques are by focusing on three interacting topics: (i) new characterizations of amenability related to Dixmier’s Conjecture, (ii) the Atiyah conjecture for discrete groups, and (iii) algebraic approximation in the algebraic K-theory of algebras of functional analytic type. All three problems are presently wide open and progress in any of the three problems would mean a breakthrough in current research.

Using Randomization techniques, I want to achieve important results in the understanding of groups
rings by contributing to a better understanding of conjectures of Dixmier’s and Atiyah’s. The field of
Algebraic Approximation is new, and has already been successfully used by G. Cortinas and myself to
resolve a longstanding conjecture in Algebraic K-theory due to Jonathan Rosenberg.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAET DRESDEN
EU contribution
€ 460 847,92
Address
HELMHOLTZSTRASSE 10
01069 DRESDEN
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0