Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Dynamic Minimal prior knowledge for model based Computer Vision and Scene Analysis

Objective

Efficient solutions for open problems in computer vision are often achieved with the help of suitable prior knowledge, e.g. stemming from labeled databases, physical simulation or geometric invariances. Yet it has been largely neglected to analyse the minimal amount of prior knowledge, needed to satisfactory solve computer vision tasks. Even more important, there is need to steer the amount of priors in a dynamic fashion. Especially for scene analysis, database knowledge can become so large and complex, that it cannot be integrated efficiently for optimization. On the other hand, there exist geometric priors which are efficient and compact, but they have to be integrated and exploited explicitly in vision systems. As a consequence there is need to develop methods to conclude from (statistical) database knowledge to geometric prior knowledge and therefore to achieve compressed priors which contain the relevant information from a given database. Besides the efficient regularization during scene analysis, specific tasks require to treat the amount of priors dynamically, e.g. to maintain individualities of patterns or to avoid a bias from a given database. Our beyond state-of-the art research will focus on answering the following questions:

1) How to limit statistical prior knowledge to geometric priors for solving markerless Motion Capture dynamically with sufficient accuracy ?
2) How to stabilize tracking without introducing a database bias, or to enforce individuality ?
3) How to extract (geometric) motion characteristics for individual motion transfer and interpretation ?

Advancing minimal dynamic prior knowledge means to seek for the essence and granularity of priors. This will have a profound impact well beyond computer vision (e.g. for cognitive sciences or robotics). We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
EU contribution
€ 1 430 000,00
Address
WELFENGARTEN 1
30167 Hannover
Germany

See on map

Region
Niedersachsen Hannover Region Hannover
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0