Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Energy-aware Aerial Swarm Search for Efficient Search and Rescue

Objective

Flying robots show great potential in many diverse applications as they can rapidly travel over rough terrain, naturally overcome large obstacles and can provide powerful sensing with a bird's-eye view. Swarms of flying robots are robust due to redundancy, allow for parallel operation and can help each other, for example to cover vast outdoor areas or to create mobile sensor networks. Swarms of flying robots can be deployed for searching tasks in disaster situations, such as in earthquakes or terrorist attacks, to locate humans who may need help.

Swarm intelligence techniques would also enable these flying robots to collaborate with each other in order to solve certain problems they may encounter, which may not have been possible with a single flying robot.

One of the main limitations with flying robots is the limited amount of energy available for flying. This limitation is heavily dependant on the battery technology that is currently available, equating to approximately 15 to 30 minutes for platforms with a diameter of 100cm or less.
We propose a new method to help mitigate this limitation by using swarms of flying robots that are energetically connected to a centralised energy station called a HiveShip. The batteries of each robot will be automatically hot-swapped when their energy is depleted, thus allowing for continuous operation during a searching task, similar to bees travelling back and forth from a hive. Such a platform would create the possibility for some interesting research in aerial swarm intelligence.
The aim of this project is to design and build a prototype of a HiveShip, including several autonomous flying robots, and to develop some basic swarm intelligence behaviours with in-field experiments.

In this project, we intend to:
- develop the aforementioned HiveShip;
- develop the technologies that will allow for automatic battery hot-swapping for the flying robots;
- develop some basic swarm intelligence behaviours with in-field experiments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

INTELLIGENIA DYNAMICS SL
EU contribution
€ 100 000,00
Address
CALLE LUIS AMADOR EDIFICIO CAMARA DE COMERCIO 26
18014 GRANADA
Spain

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0