Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Electrical Petrology: tracking mantle melting and volatiles cycling using electrical conductivity

Objective

Melting in the Earth’s mantle rules the deep volatile cycles because it produces liquids that concentrate and redistribute volatile species. Such redistributions trigger volcanic degassing, magma emplacement in the crust and hydrothermal circulation, and other sorts of chemical redistribution within the mantle (metasomatism). Melting also affects mantle viscosities and therefore impacts on global geodynamics. So far, experimental petrology has been the main approach to construct a picture of the mantle structure and identify regions of partial melting.
Magnetotelluric (MT) surveys reveal the electrical properties of the deep Earth and show highly conductive regions within the mantle, most likely related to volatiles and melts. However, melting zones disclosed by electrical conductivity do not always corroborate usual pictures deduced from experimental petrology. In 2008, I proposed that small amount of melts, very rich in volatiles species and with unusual physical properties, could reconcile petrological and geophysical observations. The broadening of this idea is however limited by (i) the incomplete knowledge of both petrological and electrical properties of those melts and (ii) the lack of petrologically based models to fit MT data. ELECTROLITH will fill this gap by treating the following points:
- How volatiles in the H-C-S-Cl-F system trigger the beginning of melting and how it affects mantle conductivity?
- What are the atomic structures and the physical properties of such volatile-rich melts?
- How can such melts migrate in the mantle and what are the relationships with deformation?
- What are the scaling procedures to integrate lab-scale observations into a petrological scheme that could decipher MT data in terms of melt percolation models, strain distributions and chemical redistributions in the mantle
ELECTROLITH milestone is therefore a reconciled perspective of geophysics and petrology that will profoundly enrich our vision of the mantle geodynamics

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 960 796,97
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0