Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

CO2VOLC: Quantifying the global volcanic CO2 cycle

Objective

Global climate change induced by anthropogenic emissions of CO2 is currently a major issue facing humanity, but uncertainties in the magnitude and rate of climate change remain, and deterministic predictions are beyond our capacity. In this context, the study of how the geochemical carbon cycle established a relatively narrow band of variability in atmospheric CO2 concentrations over the last 400 ka is of great interest. However, large uncertainties in both weathering and volcanic CO2 fluxes prevent a truly quantitative assessment of this critical cycle. Measuring the global volcanic CO2 flux, GVFCO2, would allow us to better understand the likely impact large eruptions have had in Earth’s history, and constrain the natural vs. anthropogenic CO2 flux.

We propose a truly innovative project to address head on the problem of determining GVFCO2. We will create new, compact instruments, utilising cutting-edge laser technologies, which will allow us to measure volcanic CO2, H2O, SO2 and HCl fluxes from aircraft. By flying below and through the volcanic plumes created by ~50 active volcanoes (~10% of all active volcanoes) of the Banda-Sunda arc in Indonesia, the majority of which have never been measured before, we will dramatically increase our understanding of GVFCO2 and geochemical cycles for all these species.

Measuring the volcanic emissions from an entire subduction arc is an unprecedented experiment, providing insight into the slab and mantle heterogeneity and volatile mass balance. Perhaps the most important breakthrough that we will pursue will be the determination of the 37Cl/35Cl ratio from HCl emitted from each volcano. This ratio reflects the mantle/slab source proportion, and allows the input rate of volatiles to the mantle to be measured.

The application of innovative new technology we propose here will produce ground-breaking insights into volcanology, isotope and gas geochemistry, volatile cycles, subduction and climate change.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE UNIVERSITY OF MANCHESTER
EU contribution
€ 649 902,61
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (5)

My booklet 0 0