Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Improved Cryopreservation using Ice Binding Proteins

Objective

Several organisms have evolved specialized ice binding proteins (IBPs) that prevent their body fluids from freezing (antifreeze proteins, AFPs), inhibit recrystallization of ice in frozen tissues, or initiate freezing at moderate supercooling temperatures (ice nucleating proteins, INPs). These proteins have many potential applications in agriculture, food preservation, cryobiology, and biomedical science. The ubiquitous presence of IBPs in such organisms indicates the power of these molecules to enable survival under cold conditions. Despite this key role in nature, however, IBPs have been effectively exploited in only one cryopreservation application, namely, recrystallization inhibition in ice cream. Several terrestrial organisms, including insects, have developed very active forms of AFPs. These hyperactive AFPs (hypAFPs) have not been utilized significantly thus far in cryopreservation techniques. The gap between the obvious potential of IBPs and their actual applications stems from a lack of knowledge regarding the mechanisms by which IBPs interact with ice surfaces and how these proteins can assist in cryoprotection. I propose to investigate the mechanism by which IBPs inhibit ice crystallization and the use of such proteins for cryopreserving cells, tissues, and organisms. My group has a strong record in the study of the interactions between IBPs and ice using novel methods that we have developed, including fluorescence microscopy techniques combined with cooled microfluidic devices. We will investigate the interactions of AFPs with ice and the use of hypAFPs in cryopreservation procedures. This research will contribute to an understanding of the mechanisms by which IBPs act, and apply the acquired knowledge to cryopreservation. The successful implementation of IBPs in cryopreservation would revolutionize the field of cryobiology, with enormous implications for cryopreservation applications in general and the frozen and chilled food industry in particular.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
EU contribution
€ 1 500 000,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0