Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

FOBG - Design and validation of FOBG for SHM application

Objective

Fiber Bragg grating sensors (FBG) for structural health monitoring has gained increasing importance in aerospace applications, since it enables large-scale measurement of most relevant structural parameters while mitigating well-know technical constrains of conventional sensors.
The main drawback of a fiber Bragg grating strain sensor is its thermal cross-sensitivity. Currently such a single parameter measurement is difficult to implement, since cross-sensitivity to temperature compels the use of an additional temperature reference.
In this project a passive athermal FBG strain gage that renders optional the measurement of temperature is proposed. Such a design will benefit large scale system design and performance. The innovative design will ensure athermal operation of the strain gage by canceling the intrinsic fiber optic thermal sensitivity. Moreover the passive athermal design may be adjusted to further compensate for structural thermal expansion, thus enabling stress and load-induced strain-components to be measured.
Special care will be taken on the design of the sensor enclosure to enable multiplexing of several sensors over a single optical fiber and ease installation procedures in aerospace applications. Qualified space fiber optic cables for sensing network deployment will be employed.
Commercially available industrial interrogation unit equipment will be taken as a base to evaluate the optoelectronic hardware adaptation that would be required in order to fulfill aerospace specifications. The design requirements will be assessed in terms of mechanical (mass, volume, vibration and shock), thermal (heat dissipation and operation temperature range) and electrical parameters (power consumption and communication interface).
Embedded software will allow for data conversion from wavelength measurements to engineering parameters (strain, temperature, load) that will afterwards be processed considering SHM requirements to provide automatic alarm generation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2009-01
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

FIBERSENSING-SISTEMAS AVANCADOS DEMONITORIZACAO SA
EU contribution
€ 58 500,00
Address
RUA VASCONCELOS COSTA 277
4470 640 MAIA
Portugal

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0