Objective
The interaction between light and mechanical motion in nanostructures has become a research topic with significant impact and promise recently. This rapidly developing area at the intersection between nanophysics and quantum optics is also known as “cavity optomechanics”. Fundamental investigations in quantum physics and possible applications like ultrasensitive detection of small displacements, forces and masses drive this field. By now, the basic features have been demonstrated in various experiments worldwide during the past five years. These include displacement detection with precisions down to the standard quantum limit, nonlinear dynamics in optomechanical self-oscillations, and cavity-assisted optomechanical laser-cooling of vibrational modes. The concepts involved are general enough to be applicable to a large variety of different setups, extending to variants such as nanomechanical resonators in superconducting microwave circuits and clouds of cold atoms.
It is now time to put these basic elements together and investigate the design of structures containing multiple interacting optical and mechanical modes. These could be used to form optomechanical “circuits” or “arrays”. Recently demonstrated nanofabricated photonic-phononic crystal structures provide one essential platform in which to realize these ideas. On the applied side, integrated optomechanical circuits might combine several functions, such as detection, amplification and general signal processing, or contribute to quantum information processing by converting information to and from the light field. On the fundamental side, arrays of optomechanical elements could be used to study the collective many-body dynamics (both classical and quantum) of these novel nonequilibrium systems. We propose to explore theoretically these possibilities, providing a guide-line for experiments and thereby unlocking the potential of such devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering crystals
- natural sciences physical sciences optics cavity optomechanics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences physical sciences quantum physics quantum optics
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-StG_20101014
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
91058 ERLANGEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.