Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Innovative fabrication routes and materials for METal and anode supported PROton conducting fuel CELLs

Objective

PCFC is one of the most promising technologies to reach the requirements related to cogeneration application, especially for small power systems (1-5 kWel). The investigation in the concept of advanced thin-film ceramic fuel cell technology at operating intermediate temperature between 400 and 700 °C aims at improving the characteristics (thermal cycling, heat transfer, current collection,.) as well as lowering drastically the costs of the system.
The aim of METPROCELL is to develop innovative Proton Conducting Fuel Cells (PCFCs) by using new electrolytes and electrode materials and implementing cost effective fabrication routes based on both conventional wet chemical routes and thermal spray technologies. Following a complementary approach, the cell architecture will be optimised on both metal and anode type supports, with the aim of improving the performance, durability and cost effectiveness of the cells.
Specific objectives:
- Development of novel electrolyte (e.g. BTi02, BCY10/BCY10) and electrode materials (e.g. NiO-BIT02 and NiO-BCY10/BCY10 anodes) with enhanced properties for improved proton conducting fuel cells dedicated to 500-600°C.
- Development of alternative manufacturing routes using cost effective thermal spray technologies such detonation spraying (electrolytes and protective coatings on interconnects) and plasma spraying (anode).
- Development of innovative proton conducting fuel cell configurations to be constructed on the basis of both metal supported and anode supported cell designs.
- To up-scale the manufacturing procedures based on both conventional wet chemical methods and thermal spraying for the production of flat Stack Cells with a footprint of 12 x 12 cm.
- Bring the proof of concept of these novel PCFCs by the set-up and validation of prototype like stacks in two relevant industrial systems, namely APU and gas/micro CHP.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FCH-JU-2010-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CP-FCH - Joint Technology Initiatives - Collaborative Project (FCH)

Coordinator

FUNDACION TECNALIA RESEARCH & INNOVATION
EU contribution
€ 290 002,00
Address
PARQUE CIENTIFICO Y TECNOLOGICO DE BIZKAIA, ASTONDO BIDEA, EDIFICIO 700
48160 DERIO BIZKAIA
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0