Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Precision Measurements of Fundamental Constants

Objective

The fine structure constant α, the masses and magnetic moments of elementary particles like the electron or proton, and others are fundamental quantities which determine the basic structure of the universe. They can not be predicted by theory, but their precise determination is required to enable the comparison of theoretical models with experimental observations at the highest possible level. The improvement of these quantities beyond the present level of accuracy represents a significant challenge for modern metrology. We propose ambitious experiments and measurements to substantially improve the precision of a number of fundamental constants, namely the electron and proton mass, the fine structure constant α, the magnetic moment of the proton and of the bound electron, and the Q-value of the 3H-3He decay for an improved sensitivity limit in the determination of the electron-antineutrino rest mass. Using single-ion storage in a well-defined small volume with perfectly controlled electromagnetic fields for nearly unlimited periods of time, we will measure the eigenfrequencies of the particles with unprecedented precision in dedicated Penning traps. From those values, fundamental properties such as the magnetic moment, atomic and nuclear mass or, equivalent, binding energy can be extracted. This will reveal the strength of all interactions present in the quantum mechanical system. Our new results combined with established theories will yield values for fundamental constants like the electron mass and the fine structure constant α. In order to meet these challenges novel trap geometries, ultra-sensitive and low-noise single-ion detection techniques will be developed and combined with other technological advances in order to enable us to reach up to one order of magnitude improved values for the quantities mentioned above.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 2 158 800,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0