Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

An innovative environmentally friendly gelcoating technology for composites for marine and wind-Turbine applications to reduce VOC emissions, processing time and cost

Objective

Gel coats are applied to fibre-reinforced composite materials for aesthetic or protection purposes. Styrene is an essential part of these gelcoats, with ~25% of this released during possessing. These styrene emissions cause irritation and neurological effects as well as possibly being carcinogen. One of the biggest negative effects of styrene is the perceived odour both by the workforce and neighbourhoods. As a result styrene emissions are limited under the Solvent Emissions Directive.
Although the adoption of closed mould technologies for the production of composite parts have gone a long way to reducing styrene emissions during manufacture, gelcoating must still be undertaken under open-mould conditions as no viable in-mould gelcoating technology is commercially available.
We are developing an innovative in-mould gel-coating process, requiring minimal equipment modification (and therefore low capital expenditure) based on the innovative application of low-viscocity gelcoats and a spacer fabric. The proof-of-concept work undertaken to date has this technology has the potential to achieve significant benefits beyond the current state of the art to produce parts that are fit for purpose whilst reducing styrene emissions to <5ppm.

The overall aim of the InGeCt project is to develop technical textiles and gel-coat formulations in combination with process design and optimisation that will enable significant reductions in VOC emissions whilst reducing production times by 18.5% and manufacturing cost by 10.5%. Our technology will therefore be very attractive to composites processors, giving significant economic and societal benefits to consumers and manufacturers. The SME consortium target a significant penetration of the EU market within a 5 year period, achieving direct annual sales of over €100 million. The technology will make a significant contribution to reducing VOC emissions, enabling EU SMEs to meet their immediate and forthcoming legislative requirements.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2011
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME - Research for SMEs

Coordinator

UNIVERSITY OF PLYMOUTH ENTERPRISE LTD
EU contribution
€ 41 010,80
Address
PORTLAND VILLAS 9 UNIVERSITY OF PLYMOUTH DRAKE CIRCUS
PL4 8AA PLYMOUTH
United Kingdom

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (9)

My booklet 0 0