Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

‘Filming’ excited state structural dynamics in photosynthesis and organic semiconductors

Objective

I wish to record ‘atomic movies’ of the structural quantum response in photoexcited chromophores.

The structure of molecules relaxes as a response to photoexcitation. Coherent atomic relocations are thought to be important in photosynthesis and they ‘wire’ together distant electronic systems on conjugated polymer chains. The structural details of such atomic motions remain today elusive, because experimental techniques to visualize them are simply not available.

I will pioneer femtosecond time-resolved X-ray scattering at state-of-the-art European synchrotrons and free electron lasers to directly visualize the atomic details of such motions.

The specific objectives of my challenging research plan are to measure the excited state structure of conjugated molecules; to film solvent structural dynamics on femtosecond time-scales; to directly visualize the coherent structural photoresponse of photosynthetic proteins and conjugated polymers; and to find out how nature uses structural dynamics for directed energy transport in photosynthesis.

This research program builds on my strength in organic semiconductor photophysics and time-resolved X-ray scattering. I have pioneered a description of exciton energy transfer in conjugated polymers beyond the state-of-the-art and have mapped the complete photocycle of organic solar cells for the first time. Proving that I can successfully change research fields and produce high quality results, I have been the first to apply time-resolved wide angle X-ray scattering to the study of membrane protein structural dynamics.

Femtosecond time-resolved X-ray scattering is a new generic approach with applications in physics, chemistry and biology. My work will open new horizons in quantum chemistry, photophysics, and structural biology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

GOETEBORGS UNIVERSITET
EU contribution
€ 1 690 465,00
Address
VASAPARKEN
405 30 Goeteborg
Sweden

See on map

Region
Södra Sverige Västsverige Västra Götalands län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0