Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Compact Multifuel-Energy To Hydrogen converter

Objective

Sustainable decentralized hydrogen production requires development of efficient fuel-flexible units adaptable to renewable sources.
CoMETHy aims at developing a compact steam reformer to convert reformable fuels (methane, bioethanol, glycerol, etc.) to pure hydrogen, adaptable to several heat sources (solar, biomass, fossil, refuse derived fuels, etc.) depending on the locally available energy mix.
The following systems and components will be developed:
• a structured open-celled catalyst for the low-temperature (< 550°C) steam reforming processes
• a membrane reactor to separate hydrogen from the gas mixture
• the use of an intermediate low-cost and environmentally friendly liquid heat transfer fluid (molten nitrates) to supply process heat from a multi fuel system.
Reducing reforming temperatures below 550°C by itself will significantly reduce material costs.
The process involves heat collection from several energy sources and its storage as sensible heat of a molten salts mixture at 550°C. This molten salt stream provides the process heat to the steam reformer, steam generator, and other units.
The choice of molten salts as heat transfer fluid allows:
• improved compactness of the reformer;
• rapid and frequent start-up operations with minor material ageing concerns;
• improved heat recovery capability from different external sources;
• coupling with intermittent renewable sources like solar in the medium-long term, using efficient heat storage to provide the renewable heat when required.
Methane, either from desulfurized natural gas or biogas, will be considered as a reference feed material to be converted to hydrogen. The same system is flexible also in terms of the reformable feedstock: bioethanol and/or glycerol can be converted to hydrogen following the same reforming route.
The project involves RTD activities ion the single components, followed by proof-of-concept of the integrated system at the pilot scale (2 Nm2/h of hydrogen) and cost-benefit analysis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FCH-JU-2010-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CP-FCH - Joint Technology Initiatives - Collaborative Project (FCH)

Coordinator

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
EU contribution
€ 351 468,00
Address
LUNGOTEVERE GRANDE AMMIRAGLIO THAON DI REVEL 76
00196 Roma
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (11)

My booklet 0 0