Objective
Nuclear magnetic resonance (NMR) is the most widely used spectroscopic tool in the physical sciences. Techniques are now available that provide experimental access to hyperpolarized molecules, in which NMR signals are enhanced by up to 5 orders of magnitude, with potentially revolutionary implications. However, the lifetime of the hyperpolarized state is usually limited by the nuclear spin-lattice relaxation time, called T1, and which is typically in the range of a few seconds to about 1 minute. The range of applications accessible to hyperpolarized NMR is restricted by the need to use the hyperpolarized substance within this short timescale. In this proposal, we aim to extend the lifetime of hyperpolarized substances by exploiting a phenomenon first described in our laboratory - namely the exceptional lifetime of nuclear singlet states. These are quantum superposition states of nuclear spin pairs which are protected against many common relaxation mechanisms, with experimentally demonstrated lifetimes of up to 25 minutes. We will (i) identify, design and synthesize substances that support nuclear spin states with especially long lifetimes; (ii) design and demonstrate methodology for hyperpolarizing long-lived nuclear singlet states; (iii) perform test-of-principle experiments showing enhanced NMR imaging of flow and diffusion using hyperpolarized nuclear singlet states, in contexts emulating those found in clinical magnetic resonance imaging (MRI); (iv) design and demonstrate experiments and molecular systems that allow the hyperpolarized singlet order to be transformed into magnetization of strongly magnetic nuclei such as protons, with benefits to the signal strength and to the spatial resolution. In summary we will bridge the gap between the high promise of long-lived nuclear singlet states and the world of real applications, with an emphasis on demonstrating the feasibility of real-world in vivo NMR and MRI applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
- natural sciences physical sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-ADG_20110209
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
SO17 1BJ SOUTHAMPTON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.