Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Compact High Brilliance Single Frequency Terahertz Source

Project description


High-Tech Research Intensive SMEs in FET research

We propose an integrated high power single frequency terahertz source. This source will include a double wavelength solid-state infrared laser developed specifically for this application with two different intra-cavity laser materials that will emit at close but distinct infrared wavelengths.The combination of the two emitted wavelengths in organic materials OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) and DSTMS (4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate) will produce high power monochromatic THz radiation at a frequency determined by the difference of the infrared wavelengths. We propose the realization of two different terahertz sources one operating at 4.27 THz, the other one at 9.31 THz. For these two THz sources we will develop two different double-frequency lasers TWIN-1 and TWIN-2. The first one will be based on Nd:YAG and Nd:YLF as laser hosts, with emission wavelengths at 1.33 µm and 1.31 µm. TWIN-2 uses Nd:YAG and Yb:YAG as laser hosts, with emission wavelengths at 1.03 µm and 1.06 µm. Both TWIN-1 and TWIN-2 will operate within a common and compact laser cavity.The high THz power which can be generated in a compact device is due to the very high nonlinear optical susceptibility, the low THz absorption and the relatively high optical damage threshold and phase matchability of the OH1 and DSTMS crystals. A fully integrated, compact, all solid state system operating at room temperature will result from this research. This high power single terahertz frequency source will be used to investigate non-destructively high molecular weight polyethylene materials for biomedical applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-C
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

RAINBOW PHOTONICS AG
EU contribution
€ 495 120,00
Address
FARBHOFSTRASSE 21
8048 ZURICH
Switzerland

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0