Project description
Cognitive Systems and Robotics
The MORPH project advances the novel concept of an underwater robotic system composed of a number of spatially separated mobile robot-modules, carrying distinct and yet complementary resources. Instead of being physically coupled, the modules are connected via virtual links that rely on the flow of information among them. Without rigid links, the MORPH supra-vehicle (MSV) can reconfigure itself and adapt in response to the shape of the terrain. The possible applications of the MSV cover a wide range of scientific and commercial areas such as monitoring of cold water coral reefs, oil and gas pipeline inspection, or harbor and dam protection.
The MORPH project advances the novel concept of an underwater robotic system composed of a number of spatially separated mobile robot-modules, carrying distinct and yet complementary resources. Instead of being physically coupled, the modules are connected via virtual links that rely on the flow of information among them, i. e. inter-module interactions are allowed by underwater communication networks at distant and close ranges and supported by visual perception at very close range. The MORPH supra-vehicle (MSV) is thus in sharp contrast to classical monolithic vehicles or even cooperative groups of marine vehicles that operate safely away from each other. These lack the capability of mutual support and multi-sensor interaction.Without rigid links, the MSV can reconfigure itself and adapt in response to the shape of the terrain. This capability provides the foundation for efficient methods to map the underwater environment with great accuracy especially in situations that defy existing technology: namely, underwater surveys over rugged terrain and structures with full 3D complexity. This includes walls with a negative slope, where precise localization of a single vehicle is not possible.The possible applications of the MSV cover a wide range of scientific and commercial areas such as monitoring of cold water coral reefs, oil and gas pipeline inspection, or harbor and dam protection. The common characteristic of these areas is the need for operating multiple, complementary instruments at very close range to unstructured underwater terrain while accomplishing proper geo-referencing at the same time.The MORPH concept requires qualitatively new behaviors such as adaptive sensor placement for perception and navigation, as well as environmental modeling in complex environments. On site view planning will lead to a solution well beyond the operational state of the art for underwater cliff surveys and other similar missions. A final demonstration on a vertical cliff, unfeasible automatically with today's technology, will validate the efficacy of the methods developed.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringenergy and fuelsfossil energynatural gas
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- engineering and technologymechanical engineeringvehicle engineeringnaval engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
FP7-ICT-2011-7
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
28305 BREMEN
Germany