Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Rectifying interfaces for solar driven fuel synthesis

Objective

There is rapidly growing interest in the science required to enable the conversion of solar energy into molecular fuels, motivated both by the need to develop a renewable, globally scalable transportation fuel strategy and the need to address the intermittency limitations of solar electrical power generation. Rapid progress is being made in the fabrication of inorganic, low cost, nanostructured photoelectrodes which utilise visible irradiation for such fuel syntheses, including water photolysis and CO2 photoreduction. However the efficiency of low cost photoelectrodes remains modest, due significantly to electron / hole recombination in the photoelectrode competing effectively with interfacial photochemistry. I propose to address this limitation by the use of multilayer interfaces designed to achieve enhanced uni-directional (i.e.: rectifying) charge separation, building directly from the extensive lessons I have learnt from my studies addressing an analogous challenge in dye sensitized solar cells. A key focus will be on the functionalisation of photoelectrodes with molecular and/or inorganic multi-electron catalysts to enhance the specificity and efficiency of the photoelectrode for fuel synthesis, exploiting recent, rapid advances in the syntheses of such catalysts. The use of rectifying interfaces is essential for the encorporation of such catalysts onto photoelectrodes, enabling the accumulation of multiple oxidations on the catalyst without this accumulation resulting in enhanced recombination losses. The proposal will undertake the assembly of such multilayer photoelectrodes, utlilising state of the art photoelectrode and catalyst materials, and the functional characterisation of these photoelectrodes, including measurement of interfacial electron transfer dynamics, with the aim of developing materials design rules which will enable systematic optimisation of photoelectrode function for efficient solar driven fuel synthesis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 1 800 000,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0