Objective
Subfertility is of major clinical, social and economical concern in Western societies. In approximately half of the affected couples, subfertility is due to spermatogenic failure with complete spermatogenic arrest causing azoospermia being the most extreme clinical presentation. However, despite its clinical importance, very little is known about the etiology of spermatogenic arrest.
One of the most striking features of spermatogenesis is the continuously ongoing, rapid and profound change in composition and function of chromatin, the supra-molecular complex that packages, shapes and regulates the genome. Proper chromatin architecture and dynamics steer spermatogonial selfrenewal, differentiation and meiosis and safeguard genomic stability. Consequently, changes in the spatio-temporal organization of chromatin can lead to chromosomal aberrations or aneuploidies, initiate spermatogonial apoptosis or activate a male specific checkpoint that causes spermatogenic arrest leading to male infertility or, in the worst case, even lead to congenital malformations in the offspring.
Although chromatin is highly dynamic by nature, spermatogenesis has been predominately studied in fixed material because the appropriate live-cell imaging techniques and a functional in vitro culture system for human spermatogonial stem cells (SSCs) were not available. In the current study we aim to combine two breakthroughs: a unique culture system for human SSCs established in the host laboratory and a live imaging method further developed by the research fellow. These will enable us to study, for the first time, the dynamic nature of chromatin during the self-renewal and early differentiation stages of living human SSCs. In addition, by inducing controlled points of DNA damage on selected chromosomal areas in human spermatogonia, our experiments will shed light on the mechanisms behind spermatogonial DNA damage repair, apoptosis and consequently spermatogenic arrest.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics DNA
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences biological sciences genetics heredity
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2011-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
1105AZ Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.