Objective
The primary goal of this research proposal is to push to new levels of precision the predictive power of theoretical analyses of the phenomena observed at the Large Hadron Collider (LHC) at CERN. The start-up of the LHC has opened a new era in the exploration of the fundamental laws of Nature. This is expected to lead, among other results, to the clarification of the mechanism breaking the electroweak symmetry of fundamental interactions, to the discovery of new elementary particles, possibly accounting for the Dark Matter seen in the cosmos, and to the observation of new interactions, acting differently on matter and antimatter, to explain the observed baryon asymmetry of the universe.
The crucial ingredient in the success of this ambitious programme is the ability to interpret the signals extracted by the experiments. To decode their properties and match them to the dynamics of possible new physics models relies on the numerical simulation of such dynamics, and on the ability to distinguish it from that of the known Standard Model (SM) processes. The past two decades have witnessed a continuous progress in this field, driven by the exploitation of the data from previous colliders, such as LEP, HERA and the Tevatron. The complexity of the LHC final states, the large rates of processes with many jets and their role in mimicking the production and decay of possible new particles, call for an aggressive effort to radically improve the current quality and accuracy of the theoretical modelling, to match the unprecedented discovery potential and measurement precision of the LHC experiments.
Capitalizing on recent theoretical advances, driven in significant part by the work of the PI and the team members, this proposal outlines a challenging and ambitious programme to advance to new levels the precision, generality and scope of the analysis tools used by both experimentalists and theorists engaged in LHC physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics particle accelerator
- natural sciences physical sciences astronomy astrophysics dark matter
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-ADG_20110209
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1211 GENEVE 23
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.