Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanoscale Defect Detection, Cleaning and Repair for Large Area Substrates

Objective

NanoMend will pioneer efforts to develop better, more integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area foils, and will do so in two exemplar vertical supply chains for functionalized polymer-coated paper products and for low cost flexible photovoltaics (PV). The aim is to demonstrate beyond state-of-the-art in-line detection, cleaning and repair of micro and nano-scale defects. The NanoMend strategy to develop novel optical inspection methods has three strands: 1.Enhance the effective lateral resolution and the vertical resolution of high speed optical inspection systems currently used to scan large area foils. 2. Develop high precision optical interferometric sensors with significantly higher spatial range and scan speed than existing laboratory interferometers. 3.Build and test prototype optical interferometers that can detect defects which have a spatial size below the diffraction limit (down to approximately 10nm) by utilizing a priori knowledge of the geometry of the defects and inverse modeling approaches. The NanoMend strategy for cleaning is to decrease defect density and enhance yield by using directional cleaning methods optimized for i) continuous operation to remove sub-micron defects from large area foils prior to barrier deposition, and ii) local removal of particles generated during fabrication of PV modules. Local repair techniques will be investigated in particular for interconnection defects detected near the end of PV module manufacture where the value of the work to be recovered is very high. NanoMend solutions proposed for inspection, cleaning and repair will be integrated into a) production of large-area photovoltaic panels for use in building-integrated systems with demonstrable long life (15-20 years) and b) production of polymer-coated papers used in fibre-based packaging solutions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2011-LARGE-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

UNIVERSITY OF HUDDERSFIELD
EU contribution
€ 931 112,02
Address
QUEENSGATE
HD1 3DH HUDDERSFIELD
United Kingdom

See on map

Region
Yorkshire and the Humber West Yorkshire Calderdale and Kirklees
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (14)

My booklet 0 0