Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Adaptive nanostructures in next generation metallic materials: Converting mechanically unstable structures into smart engineering alloys

Objective

The design of advanced high strength and damage tolerant metallic materials for energy, mobility, and health applications forms the engineering and manufacturing backbone of Europe's industry. Examples are creep-resistant Ni-alloys in power plants and plane turbines; ultrahigh strength steels, Al- and Mg-alloys for light-weight mobility and aerospace design; or Ti-implants in aging societies.
Since the Bronze Age the design of metallic alloys rooted in trial and error, owing to the complexity of the physical and chemical mechanisms involved and the engineering conditions imposed during manufacturing. This traditional approach has two shortcomings. First, current alloys are not developed via systematic design rules but via empirical methods. This approach is time consuming and inefficient. Second, the increase in strength via traditional hardening mechanisms always causes a dramatic decrease in ductility, i.e. making the material brittle and susceptible to failure.
SMARTMET aims at solving this inverse strength-ductility problem: The joint use of advanced synthesis and atomic characterization (expertise of PI) together with ab initio modeling (expertise of Co-PI) opens a new path to the design of next generation metallic alloys. The objective is to use these methods to identify and utilize strengthening mechanisms that allow to overcome the inverse relationship between strength and ductility. The key idea is to incorporate phases into alloys that are close or beyond their mechanical and thermodynamic stability limit. They undergo transformations under load acting as self-organized repair mechanism. SMARTMET contains risks and gains: (i) Mechanical stability through unstable phases includes the risk of material weakening but it may break the inverse strength-ductility principle. (ii) New metallurgical alloys (PI) designed via quantum mechanics (Co-PI) is risky owing to the complexity of metallic nanostructures but allows alloy tailoring based on first principles.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

MAX-PLANCK-INSTITUT FUR NACHHALTIGEMATERIALIEN GMBH
EU contribution
€ 2 920 000,00
Address
MAX PLANCK STRASSE 1
40237 DUSSELDORF
Germany

See on map

Region
Nordrhein-Westfalen Düsseldorf Düsseldorf, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0