Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Prostate cancer localization by contrast-ultrasound angiogenesis imaging

Objective

Prostate cancer causes over 1/4 of new cancer cases and 1/10 of cancer deaths in western males. Efficient methods for early treatment are available. Many lives could therefore be saved by early cancer detection, but this is not viable due to the inadequacy of the available noninvasive diagnostics. Systematic biopsy is the only reliable detection technique, but it is hampered by high costs and causes serious discomfort and health risks because of its invasiveness. Moreover, precise cancer localization is not possible, impeding the use of available focal treatments.
This research will push the frontiers of prostate cancer diagnostics by a revolutionary method for localization of cancer angiogenesis (microvascular growth). Different from all methods for angiogenesis imaging, invariably based on the assessment of blood perfusion, I aim at quantifying the local dispersion dynamics of an intravascular tracer. Dispersion is the spreading process of the tracer within the vasculature, which I firmly believe to correlate much better than perfusion with microvascular architectures and, therefore, with cancer angiogenesis.
The assessment of local dispersion is challenging and will be pursued through an intravenous injection of an ultrasound contrast bolus and novel spatiotemporal analysis of the bolus passage through the prostate circulation, measured by three-dimensional ultrasound imaging.
If successful, the proposed method will represent a breakthrough for early noninvasive and accurate prostate cancer localization, precise focal treatment, and treatment follow-up, with strong potential for use for other types of cancers, such as breast cancer. Moreover, this method will facilitate further groundbreaking research in the therapeutic control of angiogenesis in several pathologies.
This exciting research builds on my multidisciplinary expertise in ultrasound contrast dilution methods and on consistent and successful collaborations with leading clinical and industrial partners.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101014
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITEIT EINDHOVEN
EU contribution
€ 1 430 955,00
Address
GROENE LOPER 3
5612 AE Eindhoven
Netherlands

See on map

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0