Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Ecological performance of arrhythmic plants in nature

Objective

Timing is everything in ecology, and because plants provide the foundation for most land-based food webs, the timing of their activities profoundly orchestrates the majority of ecological interactions. Most photosynthetic and growth processes are under circadian control, but many additional processes--approximately 30-40% of all genes—are under circadian control, and yet the Darwinian fitness impact of being “in synch” with the environment has not been systematically studied for any organism.

We have developed a toolbox for a native tobacco plant, Nicotiana attenuata, that allows us to “ask the plant” which genes, proteins or metabolites are regulated in particular plant-mediated ecological interactions; identify “the genes that matter” for a given interaction; silence or ectopically express these genes, and conduct field releases with the transformed plants at a nature preserve in the Great Basin Desert to rigorously test hypotheses of gene function. By taking advantage of both our understanding of what it takes for this plant to survive in nature, and the procedures established to disentangle the skein of subtle interactions that determine its performance, we will systematically examine the importance of synchronous entrained endogenous rhythms at all life stages: longevity in the seed bank, germination, rosette growth, elongation, flowering and senescence. Specifically, we propose to silence a key components (starting with NaTOC1) of the plant’s endogenous clock to shorten the plant’s circadian rhythm, both constitutively and with strong dexamethasone-inducible promoters, at all life stages. With a combination of real-time phenotype imaging, metabolite and transcriptome analysis, and ecological know-how, the research will reveal how plants adjust their physiologies to the ever-changing panoply of environmental stresses with which they must cope; by creating arrhythmic plants, we will understand why so many processes are under circadian control.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110310
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 2 496 002,40
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0