Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

An innovative environmentally friendly thermo-electric power generation system for automotive and marine applications that is powered by exhaust waste thermal energy to reduce fuel consumption

Objective

Car CO2 emissions are to be limited to 120 g/km for all new passenger cars by 2012. If they are unable to achieve targets, then this may have a significant negative impact on manufacturers. Cars also produce emissions such as Nitrogen oxides, Hydrocarbons, Carbon monoxide and particulate matter which are subject to tight controls. For marine application, existing and forthcoming legislation is aiming at reducing the emissions of Carbon Monoxide, Hydrocarbons and particulate matter. In addition, concerns about rising fuel costs are driving the need for greater fuel efficiencies. As a result, a disruptive technology step is required that will enable the manufactures or cars and marine engines to meet the forthcoming legislative standards. One very attractive way of achieving this is to generate power from the Internal Combustion Engine (ICE) waste heat.
A prototype system created by BMW can generate up to 250W of electricity under normal driving conditions that can cut fuel consumption by up to 2%. However, the thermo-electric materials used for these applications to date have a number of clear limitations as they can be easily thermally damaged, are expensive and only achieve low efficiencies.
The POWER DRIVER project aims to overcome the limitations relating to the production of an automotive and marine power generation system by integrating cutting-edge nano-structured silicide and functionally graded telluride thermo-electric materials into a heat exchanger assembly that will enable electrical power to be generated from the exhaust system without affecting back-pressure or engine balance. By doing this, the exhaust system created will offer greatly improved environmental performance due to improved fuel efficiency and reduced emissions (CO2, nitrogen oxides, hydrocarbons, carbon monoxide and particulates) at a cost that is affordable to the end-user. It is predicted that (even if the additional weight of the unit is considered) fuel efficiency will increase by at least 5%, leading to a corresponding 5% reduction in emissions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2011
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME - Research for SMEs

Coordinator

EUROPEAN THERMODYNAMICS LIMITED
EU contribution
€ 521 767,00
Address
PRIORY BUSINESS PARK, WISTON ROAD 8
LE8 0RX Kibworth Harcourt
United Kingdom

See on map

Region
East Midlands (England) Leicestershire, Rutland and Northamptonshire Leicestershire CC and Rutland
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (14)

My booklet 0 0