Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nano-Electro-Mechanical Integration And Computation

Project description


Smart components and smart systems integration
NEMIAC aims to replace CMOS switches with a new digital logic technology based on nano-electromechanical (NEM) switches, which can be integrated with CMOS processing to provide low power processors.

The first fully electronic vacuum tube based computer ENIAC (Electronic Numerical Integrator And Calculator) consumed 200 kW of power. Since then power consumption has become the major bottleneck in state-of-the-art microelectronic technology as leakage power is approaching dynamic power in nanometer technologies. This is particularly an issue for emerging applications for smart components such as autonomous sensor nodes, wireless communications devices, and novel mobile computers which all require logic circuits with dramatically improved energy efficiency. The NEMIAC (Nano-Electro-Mechanical Integration And Computation) project proposes a solution to this challenge based on nano-electromechanical (NEM) switches with practically zero leakage, abrupt switching and high on-current suitable for stand-alone embedded systems as well as 3-D integration with CMOS. The potential benefits of a mature technology are an order of magnitude improvement in energy efficiency with no performance penalty in a variety of processing applications, and radiation-resistant and higher temperature operation than CMOS. Within NEMIAC, NEM switches suitable for digital logic design will be explored and developed, along with innovative circuit architectures for low power smart components and smart systems applications. The new switches will have a footprint below 3μm×3μm and targeted switching times of the order of 10 ns. Functional logic blocks based on NEM relays will then be implemented. Design and simulation methodologies will be developed for the new mechanical logic elements and used to explore the design-space for the target applications and demonstrate a small microprocessor.

The first fully electronic vacuum tube based computer ENIAC (Electronic Numerical Integrator And Calculator) consumed 200 kW of power. Since then power consumption has become the major bottleneck in state-of-the-art microelectronic technology as leakage power is approaching dynamic power in nanometer technologies. This is particularly an issue for emerging applications for smart components such as autonomous sensor nodes, wireless communications devices, and novel mobile computers which all require logic circuits with dramatically improved energy efficiency.NEMIAC (Nano-Electro-Mechanical Integration And Computation) proposes a solution based on nano-electromechanical (NEM) switches with practically zero leakage, abrupt switching and high on-current suitable for stand-alone embedded systems as well as 3-D integration with CMOS. The potential benefits of a mature technology are an order of magnitude improvement in energy efficiency with no performance penalty in a variety of processing applications, and radiation-resistant and higher temperature operation than CMOS.Within NEMIAC, NEM switches suitable for digital logic design will be explored and developed, along with innovative circuit architectures for low power smart components and smart systems applications. The new switches will have a footprint below 3μm×3μm and targeted switching times of the order of 10 ns. Functional logic blocks based on NEM relays will then be implemented. Design and simulation methodologies will be developed for the new mechanical logic elements and used to explore the design-space for the target applications and demonstrate a small microprocessor.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2011-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

IBM RESEARCH GMBH
EU contribution
€ 849 978,00
Address
SAEUMERSTRASSE 4
8803 RUESCHLIKON
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (5)

My booklet 0 0