Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Neuronal NanoCarbon Interfacing Structures

Objective

NeuroCare aims to create better retinal, cortical and cochlear implantable devices through the use of improved interfacing between the electronic implants and living cells. The NeuroCare concept involves low-cost, carbon-based materials, well-adapted for medical implants, because they (i) offer wide range of electronic properties (metal, semiconductor and insulator), (ii) are bio-inert and (iii) are physically robust. Coupling between electronic devices and neurons was recently studied using “soft”, nanocrystalline diamond-based micro-electrode arrays, evaluated in laboratory animals for retinal stimulation. These diamond implants considerably reduced gliosis, enabled stimulation currents to be raised by more than one order of magnitude before causing visible chemical alteration, and enabled long lasting operation with reduced biofouling. Our previous experience with nanocrystalline diamond will be directly built upon through the introduction of atomic layers of graphene to diamond surfaces.
NeuroCare will specifically focus on:
• Carbon-biointerface development offering reduced biofouling over the state-of-the-art, as set by the DREAMS project and improved biocompatibility
• Interfacing of rigid MEAs and FETs with cells and organs to improve bidirectional communication with neurons for in vitro research and pharmacological applications
• Nanoscale surface engineering and flexible macroscale implant materials for optimal contact to biological tissue
• Making and testing implantable MEAs and FETs for complex multichannel neuronal communication - targeting the specificity in vivo of the implantable devices for 3 high-impact clinical applications
Neurocare partners will test interfaceable and implantable devices via in vitro and in vivo testing.
NeuroCare federates 12 partners: CEA (LIST and CLINATEC), Ecole Supérieure d'Ingénieurs en Electronique, Forschungszentrum Jülich, Ayanda Biosystems SA, University College London (London Centre for Nanotechnology), Johannes

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2011-SMALL-5
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
EU contribution
€ 664 310,00
Address
RUE LEBLANC 25
75015 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (13)

My booklet 0 0