Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Size effects in fracture and plasticity

Objective

Understanding how materials respond to external mechanical perturbation is a central problem of science and engineering. While for most practical purposes it is useful to idealize the mechanical response of a material as a deterministic function of the externally applied perturbation, disorder and fluctuations are unavoidable, leading to sample-to-sample variations and non-trivial size effects. The size dependence of strength is a well known but still unresolved issue in the fracture of materials and structures. The difficulty in addressing this problem stems from the complex interplay between microstructual heterogeneity and long-range elastic interactions. Furthermore, in micro and nanoscale samples, the plastic yield strength displays size effects and strain bursts, features that are not present in macroscopic samples where plasticity is a smooth process. Large fluctuations both in fracture processes and in microscale plasticity make the use of conventional continuum mechanics problematic and calls instead for a statistically based approach. These problems are becoming particularly important in the current miniaturization trend towards nanoscale devices, since the relative amplitude of fluctuations grows as the sample size is reduced. In this project, concepts and tools of statistical mechanics are used to address size effects and fluctuations in the irreversible deformation and failure of materials. The general objective is to provide a quantitative theory that can be used as base for setting reliable safety factors. The theory will be based on the renormalization group and will be guided and validated by large scale numerical simulations such as molecular dynamics, discrete dislocation dynamics and disordered network models. Finally, we will analyze experimental data present in the literature.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITA DEGLI STUDI DI MILANO
EU contribution
€ 896 423,82
Address
Via Festa Del Perdono 7
20122 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (3)

My booklet 0 0