Objective
Understanding how the brain controls even the simplest movement is a major challenge due to the bewildering complexity of the sensorimotor and musculoskeletal system. For example, the large number of joints and muscles provide the human musculoskeletal system with numerous degrees of freedom. As such, any motor task can be achieved via an infinite number of different muscle activation patterns. Yet, experimental studies show very consistent and stereotypical patterns of kinematics and muscle activation. Furthermore, to adequately control and execute movements, the brain needs accurate information about the state of the musculoskeletal system and about (its relationship with) the world around it. The brain receives information from the many sensory systems in the human body. However, this information is corrupted with noise that is inherent to processes in any biological (nervous) system.
The proposed research is aimed at testing two influential theories in human sensorimotor control – ‘Optimal Control Theory’ and ‘The Uncontrolled Manifold Theory’- that try to explain how the brain deals with the many degrees of freedom. This will be done through a combination of computer simulations with a state-of-the-art neuro-musculoskeletal model of the human arm and new experimental designs using a unique exoskeleton robot. Furthermore, Bayesian Decision Theory has a great amount of success in explaining various phenomena in sensory-motor neuroscience. In the proposed research, this theory will be integrated with Optimal Control in combination with a detailed model of the neuromuscular plant. Specific predictions will be tested using a novel experimental design.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesneurobiology
- natural sciencesmathematicsapplied mathematicsmathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
FP7-PEOPLE-2011-CIG
See other projects for this call
Coordinator
1081 HV Amsterdam
Netherlands