Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Biomimetics for Functions and Responses

Objective

Energy efficiency and sustainability encourage to develop lightweight materials with excellent mechanical properties, combining also additional functionalities and responses. Therein nature allows inspiration, as e.g. pearl of nacre and silk show extraordinary mechanical properties due to their aligned self-assemblies. However, biological complexity poses great challenges and in biomimetics selected features are mimicked using simpler concepts. Previously artificial nacre has been mimicked by multilayer and sequential techniques and ice-templating. However, concepts for aligned spontaneous self-assemblies are called for scalability. We will develop toughened nacre-inspired materials by templating functionalized polymers on colloidal sheets in suspension, followed by self-assembly by solvent removal. Similarly, we will develop silk-mimetic materials using aligned organic fibrous reinforcements in soft dissipative matrix. Nanofibrillated cellulose will be wet-spun using extrusion into coagulant bath, followed by post drawing, drying and functionalization to allow silk-like fibers with high mechanical properties. In another route, cellulose rod-like whiskers will be decorated with soft functional polymers allowing energy dissipation, followed by alignment and interlinking to mimick silk-assemblies. The colloidal routes allow also new functionalities by using functional polymers, e.g. electroactive and conjugated polymers and nanoparticles. Importantly, redox-active polymers are bound on the colloidal sheets. Incorporating in a planar electrochemical cell with flexible electrodes, electrochemical switching of stiffness is obtained using a small voltage, as the intercolloidal interaction is controlled by the charge state of the redox-active layers. This would allow a new class of material, eg. to interface users and devices. In summary, we present a colloidal self-assembly platform for biomimetic materials with exciting mechanical, functional, and switching properties.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

AALTO KORKEAKOULUSAATIO SR
EU contribution
€ 2 296 320,00
Address
OTAKAARI 1
02150 Espoo
Finland

See on map

Region
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0