Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Imaging neural gain control in the human visual system

Objective

Gain control is a canonical neural computation that is found across the brain. Almost all models of neuronal gain propose that the activity of each neuron is normalized by the combined activity of its neighbouring neurons – a so-called ‘gain pool’. Information in the visual pathways undergoes several such normalization stages beginning in the retina and continuing through visual cortex. Gain control has been studied in animal models and using psychophysical techniques in humans but direct, quantitative measurements of neuronal activity in well-defined human visual areas has proved technically challenging. Gain control mechanisms that operate across long distances in visual space are particularly interesting to us because they must be implemented in cortex and may be sensitive markers of neurological disease.
In this project, we will use a novel and innovative combination of neuroimaging techniques (functional magnetic resonance imaging (fMRI) and electrical source imaging (ESI)) together with visual psychophysics to measure the spatial, temporal and featural tuning of long-range gain control in the human visual system and relate these findings to perception.

We have two objectives:

1: Different types of stimuli appear to have different types of gain pools. Using electrical source imaging (ESI) and fMRI we will map the selectivity of long-range gain pools in different visual areas and examine how this selectivity affects the way that different stimuli are seen.
2: Gain control changes profoundly across both space and time. We will use fMRI to examine the spatial characteristics of long-range gain control and ESI to examine its temporal characteristics. We will relate these data to perception - the ultimate goal being to predict the appearance of novel, dynamic stimuli.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

UNIVERSITY OF YORK
EU contribution
€ 100 000,00
Address
HESLINGTON
YO10 5DD York North Yorkshire
United Kingdom

See on map

Region
Yorkshire and the Humber North Yorkshire York
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0