Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

"Smart Gates for the ""Green"" Transistor"

Objective

Ultra-low voltage/power operation is expected to be an important requirement for future nanoelectronics allowing more dense and fast circuits on one hand and enabling the operation of energy efficient intelligent autonomous systems on the other. In present day devices quite a lot of power is consumed during switching since it requires a minimum bias of 60 mV on the gate to overcome a potential barrier and increase the transistor current by a decade, a process which is fundamentally limited by thermal Boltzmann statistics. We propose the development of novel negative capacitance “smart” gates with a positive feedback and internal amplification to overcome the “Boltzmann tyranny” and obtain steeper slope “green” transistors capable of operating at very low voltage. Metallic systems with a low density of states could provide the required dominant negative contributions to the capacitance due to strong carrier correlation effects. Such metallic systems made of 2D Dirac fermions with linear dispersion bands are supported in graphene and on the surface of the newly discovered topological insulators having the very interesting property that they offer a nearly zero density of states at the band crossing near the charge neutral point. We propose here the graphene and Bi2Se3-based topological insulators as the key components of the targeted “smart” gates. We aim at developing complex gate structures facing the challenges of growth of high purity and high crystalline quality graphene and Bi2Se3 thin films in combination with conventional dielectrics and metals on Si semiconductor in an effort to obtain the required properties and ensure their robust functionality at room temperature. Possible negative capacitance effects will be investigated in terms of generic capacitor electrical characterization, while transistor devices with optimum smart gates will be fabricated to prove the principle of steep slope switching.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-ADG_20110209
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

"NATIONAL CENTER FOR SCIENTIFIC RESEARCH ""DEMOKRITOS"""
EU contribution
€ 1 221 611,00
Address
END OF PATRIARCHOU GRIGORIOU E AND 27 NEAPOLEOS STREET
15 341 AGIA PARASKEVI
Greece

See on map

Region
Αττική Aττική Βόρειος Τομέας Αθηνών
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0